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a b s t r a c t

We identify forecasting models using both a traditional, partially judgmental method and
the mechanized Autometrics method. We then compare the effectiveness of these two dif-
ferent identification methods for post-sample forecasting, in the context of a relatively
large-scale exemplar of macroeconomic post-sample Granger causality testing. This exam-
ple examines the Granger causal relationships among four macroeconomically important
endogenous variables – monthly measures of aggregate income, consumption, consumer
prices, and the unemployment rate – embedded in a six-dimensional information setwhich
also includes two interest rates, both of which are taken to be weakly exogenous in this
context. We find that models indentified by the traditional method tend to have better
post-sample forecasting abilities than analogous models identified using the mechanized
method, and that the analysis done using the traditional identification method generates
stronger evidence for post-sampleGranger causality among the four endogenous variables.
© 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

In-sample Granger causality analysis is typically based
on an F-test of the null hypothesis that the coefficients on
the putatively-causing variates in a particular VAR model
equation are all zero. It has long been known that such
tests are so routinely misleading as to be of doubtful use-
fulness. As was discussed by Racine and Parmeter (2013,
Section 1) and Efron (1982, Chapter 7), this is an inevitable
consequence of the fact that these in-sample F tests are
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E-mail address: haichunye@gmail.com (H. Ye).

1 Haichun Ye appreciates the financial support of the Shanghai Pujiang
Program.

inherently based on model fitting errors. These fitting er-
rors – the magnitudes of which are, by definition, being
minimized by the estimation process itself – correspond to
what Efron calls ‘apparent’ rather than ‘true’ errors. Con-
sequently, a comparison of the post-sample forecasting ef-
fectiveness over varying information sets has long been the
methodology of choice in this area, albeit implemented in
a variety of ways: see Ashley (2003), Ashley, Granger, and
Schmalensee (1980), Guerard (1985), and Thomakos and
Guerard (2004). The reader is referred to Ashley and Tsang
(2014) and Ashley and Ye (2012) for a review of this liter-
ature.2

2 Notably, these papers discuss recent criticisms of the post-sample
forecasting testing framework, including the developing realization that

http://dx.doi.org/10.1016/j.ijforecast.2014.08.004
0169-2070/© 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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While it is well-known that a key step in post-sample
forecasting is to identify relevant time series models over
both the full and restricted information sets, very little is
known about the effectiveness of different model identi-
fication methods in post-sample forecasting. In this study,
we address this issue by identifyingmodels in two interest-
ingly distinct ways and then comparing the effectiveness
of the two model identification approaches. Specifically,
as per Ashley and Ye (2012), the models (over both the
full and restricted information sets) are first identified in
the somewhat ad hoc ‘‘large-to-small’’ manner commonly
identified with David Hendry: one starts with as compli-
cated a model as the data set will support (i.e., a vector au-
toregression in each included variable, utilizing all lags out
to at least the seasonal lag), then pares down this formula-
tion by eliminating statistically insignificant terms, start-
ing with the largest, least plausible, lags.3 It is common
(and sensible) to use some judgment in this process, so
we will identify this below as the ‘‘partially judgmental’’
identification procedure. For example, an isolated statisti-
cally significant lag structure term at lag twelve is likely to
be worth retaining in a model for monthly data, whereas
such a term at a lag of eight or eleven is not.4 Alternatively,
analogous models (over both the full and restricted infor-
mation sets) are also identified and estimated using the
‘‘Autometrics’’ mechanized model specification procedure
introduced by Doornik and Hendry (2007) and currently
implemented in the Oxmetrics software program. Both of
these model identification algorithms – along with their
sample fits to the data considered here – are described at
greater length in Section 2 below. The relative effective-
ness of these two identification algorithms in post-sample
forecasting is then examined in Section 3, in the context of
a new, relatively large-scale exemplar of Granger causality
testing.

Ashley and Ye (2012) test for post-sample Granger
causality between the median growth rate in these 31
sub-components of the US Consumer Price Index (i.e., the
monthly CPI inflation rate) and the inter-quartile range of
these 31 sub-components (i.e., the monthly dispersion in
the inflation rates across the 31 categories), but this is only
a bivariate analysis. Here we employ six, arguably more
broadly interesting, US macroeconomic aggregates:
• Aggregate real income

This variable is defined as the monthly growth rate
of seasonally adjusted real disposable personal income,
and is denoted ‘‘yt ’’ below.

particular care must be taken (as is done below) in choosing a statistical
test for post-sample forecasting improvements in the context of nested
models. Another problem with post-sample testing is the ad hoc nature
of the data split between a model identification/estimation sub-period
and a post-samplemodel evaluation sub-period. Ashley and Tsang (2014)
and Racine and Parmeter (2013) have each developed model validation
methods based on cross-validation which surmount this obstacle, for
modest sample lengths and large sample lengths, respectively; a follow-
on paper to the present work will apply the Racine–Parmeter cross-
validation model validation procedure to the (large-sample) data set and
models examined here.
3 If reasonably feasible, it is a good idea to exceed the seasonal lag at

the outset, as a multiplicatively seasonal model can be expected to yield
terms beyond the seasonal lag when one identifies an additive model.
4 See Ashley (2012, Section 14.4) for a discursive example.

• Aggregate real household consumption spending
This variable is defined as the monthly growth rate

of seasonally adjusted real personal consumption ex-
penditures, and is denoted ‘‘ct ’’ below.

• CPI inflation rate
This variable is defined as the monthly growth rate

of the seasonally unadjusted consumer price index
(CPI), and is denoted ‘‘πt ’’ below.

• Civilian unemployment rate
This variable is defined as themonthly change in the

seasonally unadjusted civilian unemployment rate, and
is denoted ‘‘1unt ’’ below.

These time series are taken to be endogenous, which is to
say, potentially Granger-caused by each other and/or by
the final two time series considered; lags in these last two
time series are therefore taken to be weakly exogenous:5

• Short-term interest rate
This variable is defined as themonthly change in the

seasonally unadjusted 3-month Treasury bill rate, and
is denoted ‘‘1tbillt ’’ below.

• Long-term interest rate6
This variable is defined as themonthly change in the

seasonally unadjusted yield on 10-year Treasury bonds,
and is denoted ‘‘1tbondt ’’ below.

These data are all used in un-deseasonalized form
whereever possible (i.e., forπt,1unt ,1tbillt , and1tbondt ),
as the Bureau of Economic Analysis’ de-seasonalization
method employs a two-sided filter which distorts causal
inferences.

The data sources, summary statistics, time plots, and
sample correlograms for these six time series are presented
in Tables 1 and 2 and Fig. 1. The changes in 1unt ,1tbillt ,
and1tbondt are used instead of their levels because these
levels data are so highly persistent that a unit root in the
levels time series cannot be rejected credibly on standard
tests. The null hypothesis of a unit root is rejected at the 1%
level for all six time series (as defined above) using both the
ADF and PP tests; see Table 3.7

Consequently, we proceeded on the assumption that all
six time series, as formulated above, are I(0).

In this setting, we find that models identified by the
‘‘partially judgmental’’ data procedure tend not to fit the
sample data as well, but produce smaller post-sample
mean squared forecast errors (MSFE) than those iden-
tified by the Autometrics algorithm. The analysis based
on the traditional, partially judgmental model specifica-
tion approach yields stronger evidence for post-sample

5 We are by no means asserting that fluctuations in the other four
variables do not Granger- cause fluctuations in these two interest rates,
we are simply not testing for these causal links.
6 The yields used here as tbillt and tbondt are taken from the St. Louis

Federal Reserve website as the secondary market rate for a three-month
Treasury bill and the constant maturity rate for a ten-year Treasury bond.
Measuring yields on such securities is a non-trivial endeavor, with the
realized yields being likely to be slightly superior to those used here.
7 The absence of a strong negative sample autocorrelation at lag one

in the correlograms for 1unt ,1tbillt , and 1tbondt confirms that they
are not over-differenced. An ARFIMA model for the levels variables was
not considered, for the reasons given, at length, by Ashley and Patterson
(2010).
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Table 1
Data source and summary statistics.

ct yt πt 1unt 1tbillt 1tbondt

Mean 0.269 0.263 0.320 0.002 −0.004 −0.003
Median 0.269 0.257 0.296 0 0.01 0
Maximum 2.382 5.735 1.790 0.9 2.61 1.61
Minimum −2.764 −5.359 −1.934 −0.7 −4.62 −1.76
Std. Dev. 0.542 0.759 0.356 0.182 0.445 0.286
Skewness −0.279 −0.119 −0.006 0.499 −1.760 −0.436
Kurtosis 5.781 19.371 6.396 4.737 28.979 8.985

All six monthly series used in this study are retrieved from the FRED II dataset. This
table provides summary statistics for the six variables over the full sample period
(1959M2–2013M5).

Table 2
Sample correlograms: 1959M1–2013M5.

Granger causality among the variables considered in this
study. We believe that the differences in the results from
post-sample Granger causality tests are a consequence of
themechanically-producedmodel specifications being less
able to forecast post-sample.

The plan of the remainder of this paper is as follows.
The models identified and estimated using these two ap-
proaches are described and compared in Section 2. The
forecasting results for the full information set, based on
the two model identification approaches, are compared in
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Fig. 1. Data time plots: 1959M1–2013M5.

Section 3; and the post-sample Granger causality testing
and results are described in Section 4. Section 5 concludes
the paper with overall comments on the causal relation-
ships found and on the relative effectiveness of the two
model identification procedures employed.

2. Model identification and estimation

This section describes the two alternative model iden-
tification procedures and presents their respective in-
sample model coefficient estimates.

Prior to model identification and estimation, we re-
served the first 12 observations (February 1959 to Jan-
uary 1960) for creating lagged variables. We then used the
395 sample observations from February 1960 to Decem-
ber 1992 formodel identification/estimation, and reserved

the remaining 245 observations, over the period from Jan-
uary 1993 to May 2013, solely for post-sample forecast-
ing andGranger-causality tests, althoughmodel coefficient
estimate updating is allowed (and done) throughout this
post-sample forecasting period.8

8 When using the Autometrics approach to identify model specifica-
tions, the first 24 observations are used to create lags and the in-sample
estimations are conducted over the period 1961M2–1992M12, with a
total of 383 observations. This particular sample vs. post-sample split de-
cision was made here at the outset in order to obtain a reasonably rep-
resentative post-sample testing period which is also sufficiently lengthy
to allow the post-sample MSE reduction tests to have adequate power.
As was noted above, a companion paper using the present data is in
preparation, inwhich this sample-splitting decision is side-stepped, using
the cross-validation methods described by Ashley and Tsang (2014) (for
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Table 3
Unit root test results.

ct yt πt 1unt 1tbillt 1tbondt

ADF test −5.663***
−11.588***

−2.599***
−6.844***

−5.982***
−7.2124***

PP test −29.697***
−31.175***

−15.905***
−26.110***

−17.240***
−18.120***

Notes: These results utilize the full data set, 1959M2–2013M5. The AIC is used to select the lag length in the ADF
test; these tests assume that an intercept is included in the test equation for each time series.
*** Indicates significance at the 1% level.

To carry out the Granger causality tests between
two variables, we compare an unrestricted model, which
includes lags in the putatively ‘‘causing’’ variable as
explanatory variables, to a restricted model, from which
these lags are excluded. For example, when testing for
Granger-causality from consumption (ct ) to income (yt ),
we simply compare the unrestricted model of income, in
which lags of consumption are included as explanatory
variables, to the restricted model of income, in which the
consumption lags are not used in the model identification
process. In both restricted and unrestrictedmodelswe also
control for the other (possibly causative) variables, and
for short-term and long-term interest rates when these
additional variables have been identified as belonging in
the model for income.

Here, we use two different approaches to identify the
unrestricted model for each of the four endogenous vari-
ables. We first identify the models in the ‘‘large-to-small’’
manner commonly identified with David Hendry. This
identification procedure is referred to below as ‘‘partially
judgmental’’, and consists of the following steps:

(1) for each endogenous variable, startwith an equation
which includes 12 lags of its own, 12 lags in each of the
five remaining variables, and outlier dummies whenever a
plot of the fitting errors indicates that some of these are
necessary;

(2) one at a time, remove all of the statistically insignif-
icant lag 12 terms (including the 12th lag in the dependent
variable) in alphabetical (or inverse-alphabetical) order;

(3) next, remove all of the non-significant lag 11 terms
one at a time in the same way, including those that are
significant per se but not part of a coherent lag structure (a
‘‘coherent lag structure’’ including a term at lag 11 would
probably also have statistically significant terms at lags 10,
9, 8, etc.);

(4) repeat Step (3) for lag 10, and so on;
(5) remove any outlier dummies that have become

statistically insignificant.
As a final step, diagnostic checks (such as plotting the

fitting errors) should also be applied.9 Two of the co-
authors independently applied this ‘‘partially judgmental’’
identification algorithm to the four endogenous variables

modest sample lengths) and Racine and Parmeter (2013) (for long sample
lengths).
9 Such plots would warn of outliers or grotesque heteroscedasticity,

although the latter is less important because of the use of robust standard
error estimates. In general, the inclusion of a sufficient number of lagged
dependent and explanatory variables eliminates serial correlation in the
errors.

(yt , ct , πt and 1unt ), and obtained essentially identical
model specifications, which are given as:10

yt = α +

3
i=1

βiyt−i +

3
i=1

δict−i +

2
i=1

φiπt−i

+

3
i=1

1tbondt−i + D75M5 + D87M4 + εt

ct = ϕ +

8
i=1

γict−i + κyt−1 +

2
i=1

λi1unt−i

+

2
i=1

ϖiπt−i + ηt

πt = χ +

4
i=1

θiπit + θ12πt−12 +

2
i=1

ϑiyt−i

+

4
i=1

ρict−i +

2
i=1

σi1tbillt−i + ς1tbondt−1

+D73M8 + νt

1unt = µ+

4
i=1

τi1unt−i + τ121unt−12

+

3
i=1

ψict−i + ψ12ct−12 + ξt .

The three ‘‘restricted information set’’ models were ob-
tained similarly for each of the four dependent variables,
dropping one of the other three potentially causative ex-
planatory variables – out of yt , ct , πt and1unt – from con-
sideration in each case. The coefficient estimates, standard
error estimates and I , the usual best-practice measure of
sample fit, adjusted for model complexity, are all listed in
Table 4a for each of the four unrestricted models.

Using just the data until December 1992, as was also
the case for the previous ‘‘partially judgmental’’ model
identifications, the remaining co-author then identified
models for each of these four endogenous time series (over
both the full and restricted information sets) using the
‘‘Autometrics’’ mechanized model specification procedure
introduced by Doornik and Hendry (2007) and currently
implemented in theOxmetrics software described by Castle
and Shepard (2009), Doornik and Hendry (2009a,b) and
Hendry (2000).

10 D75M5t ,D87M4t and D73M8t are outlier dummies for the three
months of May 1975, April 1987 and August 1973, respectively. Where
variables at the seasonal lag (12) were found to be significant, we then
also considered terms at lags 13 and 14, as such terms could arise from a
multiplicative seasonal model.
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Table 4a
Model coefficient estimates using the partially-judgmental identification
procedure.

Dependent variable
yt ct πt 1unt

yt−1 −0.259** 0.130**
−0.025

(0.111) (0.052) (0.016)

yt−2 −0.231*** 0.054***

(0.071) (0.019)

yt−3 −0.106**

(0.048)

ct−1 0.050 −0.293*** 0.037*
−0.076***

(0.050) (0.068) (0.021) (0.014)

ct−2 0.104**
−0.143** 0.002 −0.062***

(0.045) (0.063) (0.021) (0.015)

ct−3 0.132**
−0.063 −0.034 −0.037**

(0.057) (0.066) (0.021) (0.016)

ct−4 −0.097* 0.061***

(0.055) (0.021)

ct−5 −0.021
(0.045)

ct−6 0.061
(0.050)

ct−7 0.118**

(0.054)

ct−8 0.115**

(0.053)

ct−12 −0.033***

(0.012)

πt−1 −0.373***
−0.161 0.269***

(0.112) (0.110) (0.060)

πt−2 −0.197*
−0.349*** 0.202***

(0.100) (0.103) (0.051)

πt−3 −0.031
(0.049)

πt−4 0.196***

(0.049)

πt−12 0.209***

(0.043)

1unt−1 −0.055 −0.094*

(0.189) (0.052)

1unt−2 −0.399** 0.162***

(0.199) (0.056)

1unt−3 0.133***

(0.049)

1unt−4 0.195***

(0.048)

1unt−12 −0.171***

(0.045)

1tbillt−1 −0.046
(0.037)

1tbillt−2 0.088***

(0.033)

1tbondt−1 0.208* 0.192***

(0.120) (0.055)

1tbondt−2 0.038
(0.109)

1tbondt−3 0.242**

(0.099)

D73M8t 1.310***

(0.050)

Table 4a (continued)

Dependent variable
yt ct πt 1unt

D75M5t 5.642***

(0.166)

D87M4t −4.013***

(0.181)

BIC 729.9494 761.1385 35.0789 −230.3391
Notes: All models are estimated using the in-sample period 1960M2 to
1992M12. Constant terms are included but are not reported. D73M8t ,
D75M5t and D87M4t are month dummies. Robust standard errors are
reported in parentheses.

* Indicates significance at the 10% level.
** Indicates significance at the 5% level.
*** Indicates significance at the 1% level.

Autometrics, as described by Doornik (2009), is the
third generation of the Hendry (2000) GETS (‘‘general-
to-specific’’) model selection procedure, which has grad-
ually evolved into the Autometrics algorithm over the
past 20–30 years. The Autometrics algorithm has several
primary ingredients: (1) the general unrestricted model,
GUM, is the starting point for all analysis; (2) multiple
path searches are performed; (3) the encompassing test is
performed; (4) diagnostics checks are employed; and (5)
a tiebreaker procedure is employed. Since the estimated
GUM is checked by diagnostics tests, the GUM is statisti-
cally well-behaved. The k insignificant variables identified
by the algorithm create k paths formodel reduction, begin-
ning with the variables with the lowest absolute t-values.
The encompassing test is used to ensure that the current
model encompasses the GUM, while other diagnostic tests
are used to examine issues of normality, residual correla-
tion, and residual ARCH. An automated ‘‘tiebreaker’’ rou-
tine is then used to allow this fully automated procedure
to decide on a final model specification.11

The starting point for the initial model in Automet-
rics is the entire space generated by using all variables
in the regression model. The most statistically insignifi-
cant variable, on the basis of the absolute t-value, is elim-
inated before estimating the next model. The subnodes
are then reordered, with the most insignificant variable
first. The search algorithms in Autometrics: (1) prune the
model, removing one variable at each reduction; (2) bunch
several statistically insignificant variables together; and
(3) chop the least statistically significant variables from the
branches of themodel. The final (‘‘terminal’’) model cannot
be reduced on the basis of the criteria adopted. The regres-
sion tree analysis is ordered uniquely, and one can deter-
mine the minimal branch that can be deleted in order to
produce a differentmodel. Diagnostic checking is used only
after the terminal model has been reached.

In Autometrics, the initial GUM is estimated. Dummy
variables are then added to deal with possible outliers,
with the regressors being tested at a large significance

11 Model coefficient estimates are updated in subsequent (‘‘recursive’’)
post-sample forecasting – as are those of the models obtained using
the partially judgmental method described earlier – but the model
specifications are not updated using either approach.
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level; if the null hypothesis that they enter with a coeffi-
cient of zero is not rejected, then diagnostic tests are per-
formed. The starting point for the current model is the
GUM. If all of the variables are statistically significant, then
the algorithm pauses and the diagnostic testing is updated.
In an ideal world, the regressors in the GUM should pass
all diagnostic tests. If this is not the case, then the p-value
is raised for each failed diagnostic test statistic. Terminal
candidates are collected as the search procedures run, and
previously identified sub-trees are skipped. Terminal can-
didates that fail either diagnostic tests or the encompassing
test are removed.

Table 4b reports the in-sample estimates of the unre-
stricted models for the four endogenous variables identi-
fied using Autometrics procedures, again including a BIC
value for each estimated model.

In Table 5we provide a condensed summary comparing
the in-sample model identification/estimation results pro-
vided by the partially-judgmental vs. Autometrics model
identification algorithms. Broadly speaking, while the two
approaches usually (but not always) agree on the variables
to be included in each equation, they differ with respect
to the lag length of each variable, whether they control for
changes in short-term/long-term interest rates, and also in
the outlier dummy variables included.

On the other hand, it is worth noting that the model
specification algorithm choice is not entirely of no conse-
quence with regard to Granger-causality among the vari-
ables. In particular, the partially judgmental specifications
include a lagged yt in the equations for ct , whereas the
Autometrics specifications do not, and the Autometrics
specifications include lagged values of 1unt in the yt and
πt equations, whereas the partially judgmental specifica-
tions do not. Thus, if one uses the partially judgmental
model identification algorithm, then the possibility of find-
ing Granger causality running from1unt to either yt or πt
is eliminated at the outset, whereas the use of the Auto-
metrics algorithm eliminates at the outset the (Keynesian)
possibility of Granger causality running from yt to ct . Of
course, this result does not eliminate the possibility that
lagged values of one or more of the other variables may
be ‘‘proxying’’ for a lagged yt , nor the possibility that this
Keynesian-type causal link is operating primarily on a con-
temporaneous (within a month) basis.

Based on the observed BIC values, the Autometrics
model specifications are generally distinctly preferable, in
terms of their fit to the sample data.12 On the other hand,
precisely as one might expect, the partially judgmental
model specifications seemmore intuitively plausible to us
than the corresponding Autometrics-based specifications.
For example, the Autometrics-chosen unrestricted model

12 The BIC value is calculated as: BIC = −2 ln(L)+k ln(N), where ln(L) is
themaximized log-likelihood of themodel, k is the number of parameters
estimated and N is the number of observations. To ensure that the
BIC values are comparable between two model identification methods,
we also re-estimated the partially judgmental model specifications over
the sample period 1961M2–1992M12 and obtained the BIC values for
the income, consumption, inflation and unemployment rate equations
as 710.7858, 723.2877, 34.3288 and −245.1629, respectively. The
Autometrics method still yields smaller BIC values than the partially
judgmental method.

Table 4b
Model coefficient estimates using the Doornik–Hendry ‘‘Autometrics’’
identification procedure.

Dependent variable
yt ct πt 1unt

yt−1 −0.139*
−0.052***

(0.077) (0.018)

yt−2 −0.168***

(0.047)

yt−4 −0.050***

(0.013)

yt−13 −0.080**

(0.038)

yt−21 −0.119***

(0.038)

yt−24 0.054
(0.038)

ct−1 −0.230*** 0.055***
−0.062***

(0.052) (0.020) (0.014)

ct−2 −0.198***
−0.049***

(0.047) (0.015)

ct−3 −0.114**
−0.033**

(0.049) (0.013)

ct−4 −0.088* 0.937***

(0.053) (0.020)

ct−6 −0.133***

(0.046)

ct−7 −0.071
(0.049)

ct−8 0.043 0.157***

(0.044) (0.044)

ct−11 0.140***

(0.039)

ct−12 0.112***

(0.039)

ct−13 0.076
(0.047)

ct−16 0.118**
−0.042***

(0.048) (0.012)

ct−17 0.059
(0.040)

ct−19 −0.062***

(0.011)

ct−20 0.062 0.106***

(0.040) (0.040)

ct−22 0.059***

(0.016)

ct−23 −0.067*

(0.040)

ct−24 −0.086**

(0.040)

πt−1 −0.222*** 0.194***

(0.082) (0.052)

πt−2 −0.407*** 0.124***

(0.097) (0.047)

πt−4 −0.262*** 0.119***

(0.090) (0.043)

πt−7 0.116***

(0.041)

πt−9 0.186***

(0.045)

(continued on next page)
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Table 4b (continued)

Dependent variable
yt ct πt 1unt

πt−10 −0.264***
−0.217**

(0.092) (0.100)

πt−12 −0.238** 0.210***

(0.108) (0.039)

πt−14 0.388***

(0.105)

πt−15 0.130***

(0.038)

πt−16 0.180*

(0.098)

πt−18 −0.157***

(0.039)

πt−24 0.105
(0.085)

1unt−2 −0.493***
−0.434***

(0.141) (0.155)

1unt−3 0.111**

(0.045)

1unt−4 −0.174*** 0.205***

(0.056) (0.044)

1unt−5 −0.179***

(0.057)

1unt−6 −0.160
(0.159)

1unt−7 0.432***
−0.105**

(0.162) (0.044)

1unt−11 −0.215***

(0.056)

1unt−12 −0.200***

(0.043)

1unt−13 0.334**

(0.134)

1unt−15 0.262
(0.164)

1tbillt−2 0.067**
−0.050**

(0.030) (0.020)

1tbillt−3 0.036*

(0.021)

1tbillt−7 −0.153**

(0.072)

1tbillt−11 −0.130**

(0.056)

1tbillt−15 0.085*

(0.048)

1tbillt−16 0.043***

(0.014)

1tbillt−19 0.134***

(0.047)

1tbillt−21 −0.104*** 0.066***

(0.039) (0.022)

1tbillt−23 0.044** 0.033*

(0.022) (0.017)

1tbillt−24 0.137**

(0.065)

Table 4b (continued)

Dependent variable
yt ct πt 1unt

1tbondt−1 0.161***

(0.035)

1tbondt−3 0.161*

(0.089)

1tbondt−6 0.131 −0.091**

(0.094) (0.039)

1tbondt−7 0.236**

(0.114)

1tbondt−11 0.112
(0.111)

1tbondt−12 0.202**

(0.103)

1tbondt−14 0.093***

(0.029)

1tbondt−15 −0.272**

(0.106)

1tbondt−18 0.083**

(0.035)

1tbondt−20 −0.252*** 0.101***

(0.091) (0.025)

1tbondt−21 0.272***

(0.086)

1tbondt−24 −0.274**

(0.114)

D65M9t 2.381***

(0.119)

D65M10t 1.562***

(0.133)

D66M5t −1.367***

(0.094)

D68M3t 1.689***

(0.088)

D70M4t 1.756***

(0.105)

D72M10t 2.391***

(0.132)

D73M8t 1.421***

(0.040)

D75M1t 0.800***

(0.042)

D75M5t 3.431***

(0.664)

D75M6t −

D75M5t

−2.518***

(0.510)

D80M4t −1.685***

(0.124)

D85M10t −1.582***

(0.108)

(continued on next page)

for ct includes isolated (albeit statistically significant)
terms in ct−8 and1unt−7, whichwe find a bit unappealing.

Clearly, these issues need to be addressed via a consid-
eration of the post-sample forecasting performances of the
models, to which we now turn.
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Table 4b (continued)

Dependent variable
yt ct πt 1unt

D87M1t −3.422***

(0.175)

D87M4t −4.571***

(0.216)

D92M12t 2.333***

(0.126)

BIC 680.76 621.1008 −16.8867 −287.1568
Notes: All models are estimated using the in-sample period 1961M2 to
1992M12. Constant terms are included in all models except for the πt re-
gression. D1965M9t ,D65M10t ,D66M5t ,D68M3t ,D70M4t ,D72M10t ,

D73M8t ,D75M1t ,D75M5t ,D75M6t ,D80M4t ,D85M10t ,D87M1t ,

D87M4t , and D92M12t are month dummies. Robust standard errors are
reported in parentheses.

* Indicates significance at the 10% level.
** Indicates significance at the 5% level.
*** Indicates significance at the 1% level.

Table 5
Condensed comparison of model specifications.

Partially judgmental Autometrics

yt equation:
Lagged ct

√ √

Lagged πt
√ √

Lagged1unt
√

ct equation:
Lagged yt

√

Lagged πt
√ √

Lagged1unt
√ √

πt equation:
Lagged ct

√ √

Lagged yt
√ √

Lagged1unt
√

1unt equation:
Lagged ct

√ √

Lagged πt
Lagged yt

Notes: Intercepts and lagged dependent variables are included in all
models.

3. Post-sample forecasting

Based on the twomodel specifications identified above,
we next obtained one-step-ahead post-sample forecasts
from the restricted and unrestrictedmodels for each of the
four endogenous variables, using a rolling scheme with a
fixed forecasting window of width equal to the number of
in-sample observations.13

More explicitly, for each of the partially judgmental
specifications, themodel parameters are first estimated on
the sample running from 1960M2 to 1992M12 and used
to produce a forecast for each endogenous variable at date
1993M1, then re-estimated on the sample running from
1960M3 to 1993M1 and used to produce forecasts at date
1993M2, and so forth. (The Autometrics-based forecasting

13 This window comprised 395 observations for forecasts using
the partially judgmental specifications and 383 observations for the
Autometrics-based forecasts (because the latter considered variables
lagged 24 months rather than just 12).

was almost identical, except that the initial window began
twelve months later.) The corresponding (rolling) one-
step-ahead forecast errors were then used to compute
the post-sample mean squared forecast error (MSFE) for
each of the four endogenous variables, using both the
unrestricted and restricted models for that variable.

We also constructed naïve benchmark forecasts
(intercept-only models, corresponding to a constant
growth rate or change) for each of the four endogenous
variables and then compared the post-sample MSFEs from
these naïve forecasting models to those from both the re-
stricted and unrestricted models.

In addition to these forecasting results over the entire
post-sample period (i.e., from1993M1 to 2013M5),we also
computed post-sampleMSFE results for two subsets of this
period: a ‘‘pre-crisis’’ period (1993M1–2007M12) and a
‘‘crisis-plus-aftermath’’ period (2008M1–2013M5).

These results, with separate columns for the twomodel
identification methods, are all reported in Tables 6a–6d.
The naïve forecastMSFE values are displayed in the top row
of each table, and the MSFE results for both the restricted
and unrestricted models are presented in the immediately
following rows as the ratios to the results for naïve fore-
casting models.

Regardless of which model identification approach is
used, we find that the restricted and unrestricted mod-
els are able to produce more accurate forecasts than the
naïve model in most cases, and that the forecasts for the
crisis-plus-aftermath period (2008M1–2013M5) are gen-
erally less accurate than those for the pre-crisis period
(1993M1–2007M12).

Notably, the post-sample MSFE results from the mod-
els based on the Autometrics specification algorithm are
always larger than those from the partially judgmental
model specification approach. While it is not clear that
these differences are statistically significant, the unifor-
mity of the results strongly suggests that the ‘‘informed
common sense’’ utilized in the partially judgmental model
specification method yields better models, in terms of
their post-sample forecasting ability, than does the cur-
rent state-of-the-art in mechanical model specification
methodology.

Some specific post-sample forecasting results areworth
elaborating on. For the income equation, including lagged
consumption generally reduces the MSFE, while including
the inflation rate or changes in the unemployment rate
actually increases the MSFE somewhat. For the consump-
tion equation, including lagged values of the inflation rate
leads to a rise in the post-sample MSFE, while including
income (in the case of the partially judgmental models) in-
creases the MSFE of the consumption forecasts over the
pre-crisis period, though it does reduce it slightly in the
crisis-plus-aftermath period. In the case of the Autometrics
models, including the change in the unemployment rate
raises theMSFE of the consumption forecasts over both the
entire post-sample period and the pre-crisis period; this
variable decreases theMSFE by about 3% in the crisis-plus-
aftermath period.

For the inflation rate equation, including lagged val-
ues of consumption or changes in the unemployment
rate tends to increase the MSFE overall. In contrast, in-
cluding lagged income reduces the MSFE over the entire
post-sample period in themodel identified by the partially
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Table 6a
Model forecasting results for yt (post-sampleMSFE ratio vs. naïve model).

Post-sample period
1993M1–2013M5 1993M1–2007M12 2008M1–2013M5
P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics

Naïve model 0.730 0.503 1.358
Full information set 0.892 0.989 0.875 1.017 0.910 0.961
Omitting lagged ct 0.950 0.991 0.918 1.007 0.982 0.974
Omitting lagged πt 0.885 0.968 0.862 1.008 0.909 0.926
Omitting lagged1unt – 0.967 – 0.975 – 0.959

Notes: ‘‘Naïve model’’ entries are rolling window one-step-ahead post-sample MSFE values for the naïve model; the other results
are all displayed as a ratio to the corresponding naïvemodelMSFE. The column heading ‘‘P. Judg.’’ stands for ‘‘partially judgmental’’.

Table 6b
Model forecasting results for ct (post-sampleMSFE ratio vs. naïve model).

Post-sample period
1993M1–2013M5 1993M1–2007M12 2008M1–2013M5
P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics

Naïve model 0.142 0.141
Full information set 1.057 1.195 0.993 1.115 1.231 1.413
Omitting lagged yt 1.025 – 0.947 – 1.237 –
Omitting lagged πt 0.942 1.010 0.948 0.968 0.927 1.124
Omitting lagged1unt 1.047 1.150 0.983 1.040 1.224 1.450

Notes: ‘‘Naïve model’’ entries are rolling window one-step-ahead post-sample MSFE values for the naïve model; the other results
are all displayed as a ratio to the corresponding naïvemodelMSFE. The column heading ‘‘P. Judg.’’ stands for ‘‘partially judgmental’’.

Table 6c
Model forecasting results for πt (post-sampleMSFE ratio vs. naïve model).

Post-sample period
1993M1–2013M5 1993M1–2007M12 2008M1–2013M5
P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics

Naïve model 0.151226 0.113339 0.256145
Full information set 0.651 0.703 0.677 0.743 0.618 0.655
Omitting lagged yt 0.655 0.683 0.673 0.715 0.634 0.644
Omitting lagged ct 0.642 0.694 0.666 0.720 0.612 0.661
Omitting lagged1unt – 0.689 – 0.721 – 0.649

Notes: ‘‘Naïve model’’ entries are rolling window one-step-ahead post-sample MSFE values for the naïve model; the other results
are all displayed as a ratio to the corresponding naïvemodelMSFE. The column heading ‘‘P. Judg.’’ stands for ‘‘partially judgmental’’.

Table 6d
Model forecasting results for1unt (post-sampleMSFE ratio vs. naïve model).

Post-sample period
1993M1–2013M5 1993M1–2007M12 2008M1–2013M5
P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics

Naïve model 0.024 0.017 0.045
Full information set 0.836 0.916 1.006 1.097 0.657 0.726
Omitting lagged ct 0.875 0.936 1.018 1.020 0.724 0.847
Omitting lagged πt – – – – – –
Omitting lagged1unt – – – – – –

Notes: ‘‘Naïve model’’ entries are rolling window one-step-ahead post-sample MSFE values for the naïve model; the other results
are all displayed as a ratio to the corresponding naïvemodelMSFE. The column heading ‘‘P. Judg.’’ stands for ‘‘partially judgmental’’.

judgmental approach, although it raises the MSFE in the
model identified by the Autometrics approach. While both
model specifications imply that including the lagged in-
come increases the MSFE over the pre-crisis period (by
about 0.6% in the partially judgmental specification and
4% in the Autometrics specification), the two identification
approaches differ with regard to the forecasting power of
lagged income for inflation over the crisis-plus-aftermath
period: including lagged income reduces the post-sample
MSFE by about 2.5% in the partially judgmental specifica-
tion but raises it by 1.7% in the Autometrics specification.

Finally, with regard to the equation for the change in
the unemployment rate, including consumption reduces
the post-sample MSFE for forecasting1unt over the entire
post-sample period by 4.5% in the partially judgmental
specification and 2% in the Autometrics specification.
While both model specifications imply that including
lagged consumption reduces the MSFE during the crisis-
plus-aftermath period, the forecasting results for the pre-
crisis period are different: including lagged consumption
reduces the MSFE in the partially judgmental specification
but raises it in the Autometrics specification.
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Because, in general, they are able to forecast better post-
sample, the partially judgmental specification results seem
tohave a clearer interpretation than those based on theAu-
tometrics specifications. However, before framing the dif-
ferential forecasting results over differing information sets
explicitly in terms of Granger causality, it is appropriate to
test whether the forecasting improvements found are sta-
tistically significant; this is the topic of the next section.

4. Post-sample Granger causality testing

Based on the above post-sample forecasting results,
we now proceed to the post-sample statistical testing for
Granger causality among the four endogenous variables.
Specifically, in each case, we examine whether the post-
sample MSFE from the unrestricted model for a particular
endogenous variable is smaller than that obtained from
a restricted model which omits the past values of the
putatively causative variable; this done by testing the null
hypothesis that these two MSFE values are equal.

For example, to test for Granger-causality from con-
sumption (ct ) to income (yt ), we compare the MSFE for
the unrestricted model of income to that for the restricted
model that omits lagged values of consumption. If the for-
mer is smaller than the latter and the null hypothesis of
equality can be rejected, then one can conclude that con-
sumption has predictive power for income. Such a result is
then taken to be evidence for Granger causality from con-
sumption to income.14

As per the theoretical results of McCracken (2007),
when the restricted and unrestricted models are nested,
the asymptotic distributions of the Granger-Newbold
and Diebold–Mariano test statistics are significantly non-
normal, and hence, can lead to serious testing size dis-
tortions. To eliminate this problem, we use McCracken’s
F-type test statistic:

MSE − F = P


(e2r,t − e2u,t)


e2u,t ,

where er,t and eu,t are the post-sample forecast errors from
the restricted and unrestricted models, respectively, and P
is the number of post-sample observations. As was shown
by Clark andMcCracken (2001) andMcCracken (2007), this
test is also more powerful than the Diebold and Mariano
test when the models are nested.

As McCracken (2007) pointed out, the asymptotic dis-
tribution of the MSE-F test statistic itself is non-standard
and depends on the forecasting scheme (fixed, rolling or
recursive), the number of excess parameters in the nesting
model, and the ratio of the number of out-of-sample ob-
servations to the number of in-sample observations. Here,
as per Ashley and Ye (2012), we sidestep these problems
by using Monte Carlo simulations to compute p-values for
rejecting the null hypothesis of equal out-of-sample fore-
casting effectiveness for the restricted and unrestricted
models. Simulated data for each of the four endogenous

14 The MSFE-reduction testing methodology used here is essentially
identical to that of Ashley and Ye (2012), which the reader should
consult for a more detailed discussion than is given below. In fact,
the only differences here are that a noticeably larger number of
(substantiallymoremacroeconomically interesting) economic time series
are considered in both the unrestricted and restricted models, and that
two different model identification schemes are employed and compared.

variables are generated by bootstrap re-sampling from
the fitting errors of the unrestricted models for each of
these variables. In view of the probable presence of het-
eroskedasticity in the data, this re-sampling was done us-
ing the ‘wild’ bootstrap proposed by Goncalves and Kilian
(2004). Specifically, denoting the fitting errors from theun-
restricted models for income, consumption, the inflation
rate and the change in unemployment rate as τt , υt , ηt and
ωt , respectively, we draw a sequence of i.i.d. innovations
εt , t = 1, 2, . . . , T , from the standard normal distribution,
and use εt τt , εtυt , εtηt and εtωt as the bootstrapped in-
novations to generate an artificial data set of 652 obser-
vations.15 The restricted and unrestricted models are then
re-estimated and the MSE-F test statistic is calculated for
the new data set. This completes one bootstrap replication.
A total of 5000 such replications are done, and the p-value
for the MSE-F test statistic is computed as the proportion
of the generated test statistic values which exceed the test
statistic value obtained by using the actual sample data to
estimate models and produce the post-sample forecasts.

Tables 7a–7c report the MSE-F test statistic values
and the null hypothesis rejection p-values for the en-
tire post-sample period, the pre-crisis subsample and the
crisis-cum-aftermath subsample, respectively. Based on
forecasting throughout the entire post-sample period and
using the post-sample forecasts based on the partially
judgmental model specifications, there is evidence of
Granger causality running from consumption growth rates
to income growth rates, from income growth rates to the
inflation rate, and also from consumption growth rates to
changes in the unemployment rate. The analogous post-
sample forecasts based on the Autometrics model specifi-
cations only yield evidence for consumption growth rates
Granger-causing changes in unemployment over this pe-
riod. Turning to the pre-crisis subset of this period, the par-
tially judgmental specifications still find Granger causality
from consumption growth rates to income growth rates
and from consumption growth rates to changes in the un-
employment rate, whereas the Autometrics specifications
yield no evidence of Granger causality among these four
variables at all. In the crisis-cum-aftermath subset of the
post-sample period, both the partially judgmental and Au-
tometrics specifications yield evidence of Granger causal-
ity from consumption growth rates to income growth rates
and from consumption growth rates to changes in unem-
ployment. Over this latter subset of the post sample pe-
riod, the partially judgmental model specifications yield
evidence that income growth rates Granger-cause infla-
tion, but only at the 10% significance level; the models
based on the Autometrics specifications yield no evidence
for this causality link at all.

5. Conclusions

This paper investigates the impacts of different model
identification methods on post-sample forecasting. In
particular, we identify forecasting models using two

15 For simplicity, we fix the values of initial observations at their actual
sample values.
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Table 7a
Post-sample Granger causality test result summary (using the full post-sample period, 1993M1–2013M5).

Granger-caused variable
yt ct πt 1unt

P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics

Lagged yt – – −7.438 – 1.691*
−7.052 – –

(0.975) (0.069) (0.997)

Lagged ct 15.849*** 0.509 – – −3.340 −3.373 11.270*** 5.284**

(0.000) (0.116) (0.808) (0.957) (0.000) (0.021)

Lagged πt −1.822 −5.319 −26.621 −37.910 – – – –
(0.558) (0.752) (0.998) (1.000)

Lagged1unt – −5.457 −2.269 −9.208 – −5.039 – –
(0.988) (0.524) (0.954) (0.991)

Notes: McCracken’s MSE-F test statistics are reported, with their bootstrapped p-values in parentheses. The column heading ‘‘P. Judg.’’ stands for
‘‘partially judgmental’’.

* Indicates that the null hypothesis of no Granger causality can be rejected at the 10% significance level.
** Indicates that the null hypothesis of no Granger causality can be rejected at the 5% significance level.
*** Indicates that the null hypothesis of no Granger causality can be rejected at the 1% significance level.

Table 7b
Post-sample Granger causality test result summary (using the pre-crisis post-sample period 1993M1–2007M12).

Granger-caused variable
yt ct πt 1unt

P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics

Lagged yt – – −8.347 – −1.230 −6.708 – –
(0.987) (0.627) (0.999) – –

Lagged ct 8.989***
−1.635 −2.957 −5.496 2.001**

−12.605
(0.000) (0.434) (0.890) (0.997) (0.041) (0.997)

Lagged πt −2.510 −1.543 −8.249 −23.734 – – – –
(0.804) (0.335) (0.945) (0.998)

Lagged1unt – −7.344 −1.949 −12.111 – −5.178 – –
(0.999) (0.673) (0.998) (0.997)

Notes: McCracken’sMSE-F test statistics are reported, with their bootstrapped p-values in parentheses. The column heading ‘‘P. Judg.’’ stands
for ‘‘partially judgmental’’.

* Indicates that the null hypothesis of no Granger causality can be rejected at the 10% significance level.
** Indicates that the null hypothesis of no Granger causality can be rejected at the 5% significance level.
*** Indicates that the null hypothesis of no Granger causality can be rejected at the 1% significance level.

Table 7c
Post-sample Granger causality test result summary (using crisis-cum-aftermath post-sample period 2008M1–2013M5).

Granger-caused variable
yt ct πt 1unt

P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics P. Judg. Autometrics

Lagged yt – – 0.320 – 1.647*
−1.015 – –

(0.142) (0.055) (0.736)

Lagged ct 5.151*** 0.923* – – −0.642 0.619 6.649*** 10.882***

(0.000) (0.091) (0.544) (0.119) (0.002) (0.000)

Lagged πt −0.066 −2.339 −16.063 −13.264 – – – –
(0.372) (0.809) (0.999) (0.996)

Lagged1unt – −0.139 −0.377 1.720 – −0.596 – –
(0.343) (0.376) (0.113) (0.557)

Notes: McCracken’s MSE-F test statistics are reported, with their bootstrapped p-values in parentheses. The column heading ‘‘P. Judg.’’ stands
for ‘‘partially judgmental’’.

* Indicates that the null hypothesis of no Granger causality can be rejected at the 10% significance level.
** Indicates that the null hypothesis of no Granger causality can be rejected at the 5% significance level.
*** Indicates that the null hypothesis of no Granger causality can be rejected at the 1% significance level.

different approaches: using a traditional, partially judg-
mental method, and using the mechanized Automet-
rics method. We then compare their effectiveness in the

specific context of the post-sample forecasting used to
complete a relatively large scale macroeconomic Granger
causality analysis.
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We find that the post-sample forecasting ability of the
models identified by the traditional method is generally
superior to that of the models identified by the mecha-
nized method. In terms of specific Granger causality test-
ing results, the traditional, partially judgmental model
identification method yields statistically significant post-
sample evidence for Granger causality running from con-
sumption to income, from income to the inflation rate, and
from consumption to changes in the unemployment rate.
In contrast, a completely analogous analysis using forecast-
ing models identified using the mechanized Autometrics
method only finds weak evidence, at most, for consump-
tion Granger-causing changes in unemployment; this dif-
ference in the set of Granger causality results is a conse-
quence of themechanically-producedmodel specifications
(over both theunrestricted and restricted information sets)
being less able to forecast well post-sample.

Overall, we find that the model identification method
choice does indeed have a notable impact on both the post-
sample forecasting and Granger-causality testing results.
In particular – for better or for worse – a bit of experienced
human judgment still yields better forecastingmodels than
does the best currently-available mechanical method, at
least for this particular data set.
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