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Statistically significant forecasting improvements: how much
qout-of-sample data is likely necessary?
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Abstract

Testing the out-of-sample forecasting superiority of one model over another requires an a priori partitioning of the data into a model
specification/estimation (‘training’) period and a model comparison/evaluation (‘out-of-sample’ or ‘validation’) period. How large a
validation period is necessary for a given mean square forecasting error (MSFE) improvement to be statistically significant at the 5% level?
If the forecast errors from each model are NIID and these errors are independent of one another, then the 5% critical points for theF
distribution provide the answer to this question. But even optimal forecast errors from well-specified models can be serially correlated. And
forecast errors are typically substantially crosscorrelated. For such errors, a validation period in excess of 100 observations long is typically
necessary in order for a 20% MSFE reduction to be statistically significant at the 5% level. Illustrative applications using actual economic
data are given.
   2001 International Institute of Forecasters. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction sample mean square forecast error (MSFE) com-
pared to that of an alternative formulation is general-

Out-of-sample forecasting is known to be a rigor- ly taken to be strong evidence in favor of a model.
ous check of the statistical adequacy of a model. Ratios of MSFE ratios are typically subject to
Indeed, in the case of time series data, poorly substantial amounts of sampling error, however, so
specified models usually provide inferior out-of-sam- the question arises of whether a particular observed
ple forecasts than do naive — e.g., constant growth ratio is or is not significantly less than one.
rate — models. Even reasonably well specified This question has been explicitly considered in
models typically forecast less well than their fit to several strands of the time series forecasting litera-
the sample data would lead one to expect. ture. One approach begins with the observation

Thus, even a modest improvement in the out-of- (Morgan, 1939–1940; Granger & Newbold, 1977)
that the difference in the squares of two time series
equals the product of the time series formed byqA more detailed version of this paper is available as VPI
adding and subtracting these series:Economics Department Working Paper[E-00-06.
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so that, if hx j and hy j is each a sequence of zero In a third approach, Ashley (1998) develops at t

mean forecast errors, two-stage bootstrap algorithm for testing the null
hypothesis that both forecast error series yield equalvar(x )2 var(y )5 cov x 1 y , x 2 y .s dt t t t t t expected losses. This test allows for non-quadratic

Recognizing that actual out-of-sample forecast error loss functions and for errors which are at once
series are typically cross-correlated, serially corre- non-gaussian and both contemporaneously and seri-
lated, and biased, this notion was later developed ally correlated. The bootstrap approach — replacing
(Ashley, Granger & Schmalensee, 1980; Ashley, the (unknown) true population distribution of variates
1981) into a usable, albeit somewhat cumbersome, by their (observed) empirical distribution — is itself
test of the null hypothesis that MSFE(x )5 only asymptotically justified, however.t

MSFE(y ) based on regressingx 2 y againstx 1 y . That is the motivation for the second stage of thet t t t t

The attractiveness of this test is diminished, how- bootstrap algorithm: in this stage the bootstrap is
ever, by its inherent limitation to settings in which a used to estimate the degree of uncertainty which
squared error loss function is appropriate and by the should be assigned to the first stage bootstrap
fact that it is only asymptotically justified, whereas inferences due to the fact that the number of
feasible sequences of validation period forecasting validation period forecast errors available is not
errors are typically rather short. large. Thus, in this approach, the significance level at

Diebold and Mariano (1995) provide several tests which the null hypothesis (of equal expected losses
of out-of-sample forecasting accuracy which at least for both forecast error series) can be rejected is
relax the restriction to squared error losses. All of typically estimated (using the bootstrap) one hundred
their tests are based on the observed loss differential, times, allowing one to use the interquartile range of
g(x )2 g(y ), where g( ? ) is some specified loss these one hundred significance levels as a measure oft t

function on the forecast errors. One of their tests is the uncertainty in the median significance level.
based on the estimated spectral density of the mean Thus, for a given sequence ofT out-of-sample
observed loss differential, evaluated at frequency forecast errors from each of two models (hx j andt

zero. They also suggest a non-parametric test (the hy j, t 51 . . .T ) and a given loss function (g), it ist

standard sign test) for assessing whether the median now possible to more or less credibly test the null
loss differential exceeds zero. This latter test would hypothesis thatEhg(x )j5Ehg(y )j. Regardless oft t

be exact for short model validation periods ifhx j and which test one chooses, however, one must firstt

hy j were both identically and independently distrib- select a value forT, the number of observationst

uted, but all of their tests are only asymptotically which will be withheld from the model specification/
justified where (as is often the case) one or both estimation process for use as a model validation
forecast error series is serially correlated. For exam- period, but it is not clear how to make this selection.
ple, as noted below, serial correlation is common in The present paper addresses the resulting practical
multi-step-ahead forecasts; indeed, optimalh-step- issues:
ahead ARMA model forecasts are well known to be
MA(h21). Even one-step-ahead forecasts are often 1. Given that one expects (hopes) to obtain an out-

1serially correlated due to model mis-specification. of-sample mean square forecasting error (MSFE)
improvement of, say, 20%, how long a model
validation period will be necessary, on average, in

1West (1996); West and McCracken (1998); Stock and Watson order for this MSFE improvement to be statisti-
(1999); McCracken (2000); and Chao, Corradi and Swanson

cally significant at the 5% level?(2000) provide alternative asymptotically justified tests. Which, if
2. Supposing that one can only ‘afford’ to withhold,any, of these large-sample tests is appropriate for use — e.g.,

correctly sized — in small model validation samples is not say, T540 observations for model validation,
directly relevant here: the present paper examines how much how large an out-of-sample MSFE improvement
out-of-sample data is necessary in order to reject the null will likely be necessary in order to conclude that
hypothesis that MSFE(x )5MSFE(y ) at the 5% level in at t this improvement was significant at the 5% level?selection of simple settings in which the distribution (under the
null) of the sample MSFE ratio itself can be obtained by
simulation. If the two forecast error series are known to be
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gaussian, zero mean, i.i.d.,and independent of each while it can in some cases be important — is not
other, then these questions would be immediately ordinarily the main source of forecast MSE. Conse-
answerable by reference to the usual tables of the 5% quently, and since inference on second moments
critical points of theF distribution. But these as- requires far more data than inference on first mo-
sumptions are typically substantially violated by ments, the issue of how long a model validation
actual sequences of forecast errors. For one thing, sample needs to be usually hinges crucially on the
optimal multi-step-ahead forecasts are known to be ability to detect differences in error variance rather
serially correlated — e.g., see Granger and Newbold than differences in mean error.)
(1977, p. 121). And modest amounts of serial Both gaussian and non-gaussian (Student’st and
correlation are also commonly observed in sequences truncated gaussian) variates are explicitly considered
of one-step-ahead forecast errors, due to model mis- so as to gauge the sensitivity of the results to the
specification and model instability. Moreover, fore- shape of the tails of the error distribution. The
cast errorseven from optimal forecasts made using generation of correlated AR(1) errors is described in
well-specified models can be (and often are) notably some detail below; since optimalh-step-ahead fore-
contemporaneously cross-correlated. cast errors are known to follow an MA(h21)

Therefore, these two questions are addressed process, analogous results are also given for MA(2)
below using simulation methods for sequences of errors.
serially correlated, contemporaneously crosscorre- In particular, lethx ; t 5 1 . . .T j denote one seriest

lated forecast errors; both gaussian and non-gaussian (‘the out-of-sample forecast errors made by Model
error distributions are considered. The mechanics of X’) and lethy ; t 5 1 . . .T j denote the correspondingt

generating pairs of simulated forecast error series ‘out-of-sample forecast errors made by Model Y.’
with these characteristics are detailed in Section 2; These forecast errors are assumed to be both contem-
simulated 5% critical points for testing the null poraneously crosscorrelated and serially correlated;
hypothesis of equal MSFE for these series are given specifically:
in Section 3.

r 5 corr(x , x ) (1)x t t21These critical points are noticeably larger than one
might expect, indicating that MSFE reductions well

r 5 corr(y , y ) (2)y t t21in excess of 20% will typically be necessary in order
to be significant at the 5% level, even with model

r 5 corr(x , y ) (3)t tvalidation periods 80 to 100 observations in length.
Put another way, these calculations indicate that a The time serieshx j andhy j are then generated fromt tmodel validation period in excess of 100 observa- the stochastic recursion equations
tions long is typically necessary in order for a 20%

x 5r x 1´ ´ | i.i.d.(0, 1) (4)MSFE reduction to be statistically significant at the t x t21 t t

5% level. Illustrative examples using forecasting
y 5r y 1g(h 1w ´ )errors from models based on actual economic data t y t21 t t

are given in Sections 4 and 5.
h | i.i.d.(0, 1) (5)t

where corr(́ , h )50 and ‘i.i.d.(0,1)’ denotest t

2. Generation of correlated forecast error series ‘identically and independently distributed with zero
mean and unit variance.’ The constantsg and w are

In order to calculate how large an observed MSFE chosen below so that corr(x , y )5r and so thatt t

ratio is required to be able to reject the null hypoth- (corresponding to the relevant null hypothesis)
esis that the population ratio is one, sequences of var(x )5var(y ).t t

data with the specified serial and cross correlations Sinceg andw are constants, it follows from Eqs.
are obtained via numerical simulation. For simplici- (4) and (5) thatg(h 1w´ ) is identically andt t

ty, each of these ‘forecast error’ series is generated independently distributed with mean zero and vari-
2 2with zero population mean, so the MSFE ratio ance equal tog (11w ). Thus, hx j and hy j aret t

reduces to a ratio of variances. (Forecast bias — ordinary (albeit correlated) AR(1) processes. Eqs.
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(1) and (2) therefore follow from well-known results series,h´ j andhh j. As noted at the beginning of thist t

on such processes — e.g., Box and Jenkins (1976, section, both gaussian and non-gaussian innovations
pp. 56) or Granger and Newbold (1977, pp. 15). are used in the simulations reported below. The

Explicit expressions forg and w imposing gaussian variates were obtained using the Box–Mul-
the restrictions that corr(x , y )5r and that ler method, as described in Press, Flannery andt t

var(x )5var(y ) follow from the MA(`) forms of Teukolsky (1986, pp. 202–3). Truncated gaussiant t

these two processes: variates (truncated at62 standard deviations) were
obtained using the acceptance/ rejection method and`

j scaling appropriately to restore unit variance.Variatesx 5Or ´ (6)t x t2j
j50 from the Student’st distribution with 5 degrees of
` freedom were obtained directly from its definition,

jy 5Or g h 1w´ (7) by generating in each case both a unit normal variates dt y t2j t2j
2j50 and an independentx (5) variate.

Since optimal h-step-ahead forecast errors arewhich directly imply that
known to follow an MA(h21) process, it is worth

1 noting that, from Eqs. (6) and (7), the AR(1)]]var(x )5 (8)t 212r processes considered above are essentially equivalentx

to large order MA processes with geometrically2 2
g (11w ) declining weights. Variates from MA(2) processes]]]]var(y )5 (9)t 212r with non-declining weights were obtained as follows,y

letting
gw
]]]cov(x , y )5 (10)t t x 5´ 1u ´ 1u ´ (13)12r r t t x t21 x t22x y

The resulting expression for the squared correlation y 5g h 1w ´ 1u g h 1w ´s d s dt ma t ma t y ma t21 ma t21betweenx and y yieldst t
1u g h 1w ´ (14)s dy ma t22 ma t22]]]]]]]]]]2 2(12r r ) rx y So as to make the results based on these MA(2)]]]]]]]]]]w 5 (11)2 2 2 2(12r )(12r )2 (12r r ) rx y x yœ processes more easily comparable to the AR(1)

2results,u is chosen so that theR for the x processx tas the value ofw for which the squared correlation
equals that of an AR(1) process with given parame-2betweenx andy equalsr . Note that not every (r ,t t x ter r . This implies thatxr , r) combination yields a real value forw; thisy
]]]reflects the fact that it is not possible forx andy to 2t t r xbe too highly correlated ifr differs substantially ]]]x u 5 (15)x 22(12r )from r . œ xy

The relevant null hypothesis here is that var(x )5t with an analogous relation obtaining foru . Choosingyvar(y ). Solving Eqs. (8) and (9) for the value ofgt w andg, as before, to force the squared correlation
which this implies, 2betweenx andy to equalr and the variance ofxt t t
]]]]]2 to equal that ofy yieldst(12r )y
]]]]]g5 (12) ]]]]]]]]]]2 2 2 2 2(11w )(12r )œ x (11 2u )(11 2u )rx y

]]]]]]]]]]w 5 (16)ma 2 2 2 2(112u u ) 2 (11 2u )(11 2u )rThus, using Eqs. (11) and (12) to obtain the x y x yœ
parametersw andg, realizations ofhx ; t 5 1 . . . T jt andand of hy ; t 5 1 . . .T j for a given serial and crosst

]]]]]]correlation structure specified by (r , r , r) can be 2x y (11 2u )xobtained by recursively simulating Eqs. (4) and (5) ]]]]]]g 5 (17)ma 2 2(11w )(11 2u )ma yœusing generated random variates for the innovation
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3. Simulation results and interpretation degrees of serial correlation to be this highly corre-
lated with one another.

Tables 1 through 4 report 5% critical points for the Table 1 reports the results for forecast error series
2 2distribution ofs /s , the ratio of the sample variance based on gaussian innovations. Since the samplex y

of one postsample forecast error series —hx ; t 5 variance in essence squares the forecast errors, thet

1 . . .T j — to that of another —hy ; t 51 . . .T j — symmetry of the gaussian distribution is of littlet

for given serial and cross correlations (r , r , andr) concern here. In contrast, the robustness of thex y

and validation period length,T. These critical points results to varying assumptions as the shape of the
are calculated by simulatingN pairs of forecast error tails of the innovation distributions is of considerable
series as described in the previous section, comput- concern; consequently, Tables 2 and 3 report analo-
ing the sample variance ratio for each, and obtaining gous results where the underlying innovations are
the 95% fractile of theN resulting sample variance gaussian variates truncated at62 standard deviations

6 2ratios.N was increased until (atN 510 ) the results or Student’st variates with 5 degrees of freedom.
stabilized. For Tables 1 through 3, the forecast error serial

In each table critical points are calculated using correlation considered is of AR(1) form, which
forecast error series generated with negligible (r , corresponds to an infinite order MA process withx

r 5 0.00), moderate (r , r 50.50), and severe (r , geometrically declining weights. Since optimalh-y x y x

r 5 0.90) levels of positive serial correlation; nega- step-ahead forecasts are known to follow an MA(h2y

tive serial correlation is not considered since it is so 1) process and, more broadly, to examine the robust-
atypical. Since the critical points are invariant to the ness of the results to a departure from this particular
sign of the cross correlation (r), results are given pattern of serial correlation, results are given in
only for non-negative values of this parameter with Table 4 for forecast errors generated from an MA(2)
no loss of generality. Critical values are presented in
the tables for all feasible values of (r , r , and r) 2x y These innovations are theh´ j andhh j series driving Eqs. (4) andt twith r equal to 0.00, 0.50, and 0.90; a few combina- (5) or (13) and (14). Note that, since the forecast errorshx j andt
tions — e.g., (0.00, 0.90, 0.90) — are omitted since hy j are weighted sums of these innovations, they follow the samet

it is not possible for two series with such disparate distribution as the innovations only in the gaussian case.

Table 1
Out-of-sample error variance ratios — 5% critical points. Gaussian innovations — AR(1) processes

r r ur u T 5 10 T 5 20 T 5 40 T 580 T 5160x y

0.00 0.00 0.00 3.18 2.16 1.70 1.45 1.29
0.00 0.50 0.00 4.36 2.67 1.94 1.57 1.36
0.00 0.90 0.00 16.66 8.11 4.52 2.86 2.05
0.50 0.00 0.00 2.75 2.08 1.71 1.48 1.32
0.50 0.50 0.00 3.75 2.54 1.93 1.59 1.39
0.50 0.90 0.00 14.19 7.60 4.41 2.85 2.06
0.90 0.00 0.00 1.14 1.33 1.54 1.59 1.50
0.90 0.50 0.00 1.54 1.60 1.69 1.68 1.55
0.90 0.90 0.00 5.67 4.47 3.52 2.72 2.12
0.00 0.00 0.50 2.77 1.96 1.59 1.38 1.25
0.00 0.50 0.50 3.68 2.38 1.80 1.49 1.32
0.50 0.00 0.50 2.33 1.86 1.58 1.40 1.28
0.50 0.50 0.50 3.22 2.27 1.79 1.51 1.33
0.50 0.90 0.50 10.35 6.00 3.77 2.56 1.91
0.90 0.50 0.50 1.19 1.31 1.47 1.50 1.43
0.90 0.90 0.50 4.69 3.78 3.05 2.40 1.91
0.00 0.00 0.90 1.69 1.41 1.27 1.18 1.12
0.50 0.50 0.90 1.84 1.52 1.35 1.23 1.16
0.90 0.90 0.90 2.31 2.04 1.81 1.58 1.40
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Table 2
Out-of-sample error variance ratios — 5% critical points. Truncated gaussian innovations — AR(1) processes

r r ur u T 5 10 T 520 T 5 40 T 5 80 T 5160x y

0.00 0.00 0.00 2.75 1.93 1.56 1.36 1.24
0.00 0.50 0.00 3.85 2.41 1.81 1.50 1.32
0.00 0.90 0.00 14.96 7.59 4.38 2.82 2.03
0.50 0.00 0.00 2.42 1.88 1.59 1.40 1.28
0.50 0.50 0.00 3.35 2.34 1.82 1.53 1.35
0.50 0.90 0.00 12.85 7.11 4.28 2.81 2.04
0.90 0.00 0.00 1.04 1.27 1.49 1.56 1.49
0.90 0.50 0.00 1.41 1.53 1.66 1.65 1.55
0.90 0.90 0.00 5.24 4.30 3.50 2.72 2.12
0.00 0.00 0.50 2.61 1.86 1.52 1.33 1.22
0.00 0.50 0.50 3.56 2.29 1.75 1.46 1.30
0.50 0.00 0.50 2.25 1.80 1.53 1.37 1.26
0.50 0.50 0.50 3.09 2.18 1.73 1.47 1.31
0.50 0.90 0.50 10.30 5.96 3.75 2.56 1.91
0.90 0.50 0.50 1.19 1.32 1.47 1.52 1.45
0.90 0.90 0.50 4.59 3.75 3.07 2.44 1.95
0.00 0.00 0.90 1.71 1.41 1.26 1.18 1.12
0.50 0.50 0.90 1.85 1.53 1.34 1.23 1.16
0.90 0.90 0.90 2.32 2.04 1.81 1.59 1.42

Table 3
Out-of-sample error variance ratios — 5% critical points. Student’st innovations — AR(1) processes

r r ur u T 5 10 T 5 20 T 5 40 T 580 T 5160x y

0.00 0.00 0.00 4.50 2.98 2.23 1.81 1.54
0.00 0.50 0.00 5.99 3.59 2.48 1.93 1.61
0.00 0.90 0.00 22.03 10.12 5.39 3.29 2.29
0.50 0.00 0.00 3.79 2.79 2.18 1.80 1.55
0.50 0.50 0.00 5.05 3.34 2.43 1.92 1.61
0.50 0.90 0.00 18.41 9.35 5.20 3.24 2.28
0.90 0.00 0.00 1.51 1.68 1.82 1.79 1.66
0.90 0.50 0.00 1.99 1.99 2.00 1.89 1.71
0.90 0.90 0.00 7.18 5.35 4.07 3.02 2.30
0.00 0.00 0.50 3.12 2.28 1.83 1.56 1.39
0.00 0.50 0.50 3.93 2.61 1.98 1.63 1.42
0.50 0.00 0.50 2.47 2.03 1.73 1.52 1.37
0.50 0.50 0.50 3.54 2.55 2.00 1.67 1.45
0.50 0.90 0.50 10.37 6.08 3.82 2.60 1.94
0.90 0.50 0.50 1.19 1.34 1.50 1.52 1.46
0.90 0.90 0.50 5.00 4.01 3.23 2.55 2.02
0.00 0.00 0.90 1.66 1.40 1.27 1.19 1.13
0.50 0.50 0.90 1.81 1.51 1.34 1.23 1.16
0.90 0.90 0.90 2.29 2.03 1.80 1.58 1.40

2process with equal weights on each of the two lagged yield an MA(2) process withR equivalent to that of
innovations. So as to enhance the comparability of an AR(1) process withr or r equal to 0.00, 0.50,x y

these results to those of the previous tables, in each or 0.90.
case the two MA coefficients are chosen so as to The top row of Table 1 corresponds to the case of



R. Ashley / International Journal of Forecasting 19 (2003) 229–239 235

Table 4
Out-of-sample error variance ratios — 5% critical points. Gaussian innovations — MA(2) processes

r r ur u T 5 10 T 5 20 T 5 40 T 580 T 5160x y

0.00 0.00 0.00 3.17 2.16 1.70 1.44 1.29
0.00 0.50 0.00 4.19 2.58 1.90 1.55 1.35
0.00 0.90 0.00 5.59 3.06 2.09 1.64 1.40
0.50 0.00 0.00 2.87 2.12 1.72 1.48 1.32
0.50 0.50 0.00 3.76 2.51 1.90 1.57 1.37
0.50 0.90 0.00 4.95 2.94 2.08 1.66 1.42
0.90 0.00 0.00 2.90 2.19 1.77 1.52 1.35
0.90 0.50 0.00 3.78 2.58 1.96 1.61 1.40
0.90 0.90 0.00 4.92 3.00 2.13 1.69 1.45
0.00 0.00 0.50 2.76 1.96 1.59 1.38 1.25
0.00 0.50 0.50 3.55 2.31 1.76 1.47 1.31
0.50 0.00 0.50 2.44 1.89 1.59 1.40 1.27
0.50 0.50 0.50 3.24 2.25 1.77 1.50 1.33
0.50 0.90 0.50 4.00 2.47 1.84 1.52 1.34
0.90 0.50 0.50 3.01 2.17 1.73 1.48 1.32
0.90 0.90 0.50 4.15 2.63 1.95 1.60 1.39
0.00 0.00 0.90 1.69 1.41 1.26 1.18 1.12
0.50 0.50 0.90 1.85 1.52 1.34 1.23 1.16
0.90 0.90 0.90 2.13 1.65 1.41 1.27 1.18

normally, identically, and independently distributed are usually necessary atT 5 20: in order to be
forecast errors from each model and an assumption significantly different at the 5% level, the sample
that the errors made by one model are uncorrelated variance of one forecast error series ordinarily needs
with those made by the other model. Here simula- to be at least 40% to 70% smaller than the other. Not
tions are not actually necessary: for a validation untilT 5 80 is a 20% error variance reduction
period of lengthT, the relevant critical point is that significant at the 5% level, and then only ifr is 0.90
of the F(T 2 1, T 2 1) distribution. In this case we and the serial correlation in both error series is

3see that a validation period length ofT 510 or modest.
T 5 20 will almost always be inadequate — in order Turning to the results using non-gaussian innova-
to be significant at the 5% level one model’s forecast tions — truncated gaussian or Student’st with five
error variance would need to be two to three times degrees of freedom — the results are substantially
smaller than the other! Even atT 5 80, a 45% error similar, especially for highly correlated forecast
variance reduction is required for significance at the errors. Apparently, over the parameter ranges consid-
5% level. ered here, the form and extent of the serial and cross

Are similar error variance reductions necessary in correlation structure in the forecast errors is much
the more realistic situation where the forecast errors more important than the tail shape of the underlying
are substantially correlated with one another, and innovation distributions, even for smallT.
perhaps serially correlated as well? Looking at the
remaining rows of Table 1, the critical points clearly 3Mizrach (1992) shows analytically how the density function for

2do vary with (r , r , r), but are in many cases even the variance ratio of two sample variances depends onr in thex y
2larger than for totally uncorrelated errors. The most special case wherer 5r 5 0. Ironically, ther sensitivity of thisx y

density — which Mizrach (correctly) identifies as causing seriousnotable exceptions are wherer is 0.90 andT is veryx
2 size distortion in statistical tests when the TheilU-statistic issmall (due to severe small-sample biases ins withx (incorrectly) taken to be distributed as anF variate — here causes

such data) and, more importantly, wherer is fairly a smaller MSFE reduction to be significant at the 5% level. Note
2high. Nevertheless, even wherer is 0.90, these also thats is biased in small samples forr ± 0; that is why thex x

results indicate thatsubstantial variance reductions critical point drops in some cases asN rises from 10 to 20.
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Table 4 lists the results using MA(2) forecast In all three cases the one-step-ahead forecast
errors. As one might expect from the foregoing, errors were computed using a rolling 64 quarter
these critical points differ — in many cases con- sample period, initially 1969I–1974IV; the resulting
siderably — from the analogous results using AR(1) 96 quarter out-of-sample forecasting period was
processes of similar ‘strength.’ In particular, for 1975I–1998IV. The forecast errors from all three
smallT the largest MA(2) critical points are substan- models appear to be covariance stationary and
tially smaller and the smallest MA(2) critical points serially uncorrelated.
are substantially larger than for the AR(1) processes. Since the observed mean square forecasting error
This is probably due to differences in the small- of the ARMA forecasts is smaller than that of either

2 2sample biases ins and s using the MA(2) instead set of naive forecasts, Guerard and Thomakos pro-x y

of the AR(1) process. The basic conclusions to be ceeded to test the statistical significance of these
drawn from the MA(2) process critical point results, MSE reductions using both the Diebold–Mariano
however, are essentially identical to those obtained and the bootstrap tests alluded to in Section 1 above.
with AR(1) errors: with validation periods ten to Test results on their forecast error series, in each
twenty periods long, one sample variance must still case based on a squared error loss function, are
be at least several times smaller than that of another summarized in Table 5.
in order for the difference to be statistically signifi- Even with 96 out-of-sample observations, the 8%
cant at the 5% level unless the errors are quite MSE reduction of the ARMA model forecasts com-
strongly correlated, in which case a 40% to 60% pared to the constant growth rate model forecasts is
variance reduction is still necessary. not significant at even the 10% level on either test. In

contrast, the 16% MSE reduction provided by the
ARMA model compared to the no-change model is

4. Example: Univariate stock price forecasting significant at the 6% level on the Diebold–Mariano
4models test and at the 5% to 10% level on the bootstrap test.

Guerard and Thomakos (2000) compute several
forecasts for the logarithmic growth rate of U.S.

4The Ashley (1998) bootstrap test computes 100 significancestock prices, as measured by the Dow Jones In-
levels so as to quantify the uncertainty in the inference signifi-dustrial Average. They compare the accuracy of
cance level induced by the finite length of the validation period

forecasts from an ARMA(0,1) model to that obtained used. What is quoted here is the 25% and 75% fractiles of these
from two naive models: a constant growth rate model 100 significance levels — i.e., in this case, the middle 50
and a a no-change (zero growth rate) model. computed significance levels lie between 0.05 and 0.10.

Table 5
ARMA(0,1) versus naive stock return forecasts

Constant growth rate ‘No-change’
naive model naive model

Model validation period 1975I to 1998IV 1975I to 1998IV
N 96 96
Out-of-sample MSE reduction 8% 16%
ARMA-naive error correlation 0.83 0.83
Bootstrap test results
median significance level 0.22 0.08

a50% confidence [0.17, 0.26] [0.05, 0.10]
Diebold–Mariano test results
Significance level 0.22 0.06

a Endpoints are the 25 and 75% fractiles of the 100 significance levels generated by the Ashley (1998) bootstrap test algorithm for testing
the MSE ratio.
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Thus, the 16% MSE drop apparently is sufficient for using a number of statistical tests, including the
statistical significance, at least at the 10% level. Diebold–Mariano and bootstrap tests. The particular

Are these the kind of test results one might expect, result of interest here is a comparison of the domes-
given the simulated 5% critical points tabulated in tic consumption forecast from the two models over
the previous section? In addition to gaussianity, the sixteen quarter period extending from 1996I to
those critical points are for error variance ratios 1999IV.
rather than MSE ratios, but bias is not an important The mean square error over this period in forecast-
factor in the sample MSE for any of these forecasts: ing domestic consumption using the model based on

2the bias /MSE ratio is only 0.006, 0.033, and 0.114 Kansas City wheat prices is 19% smaller than that
for the ARMA, constant growth rate, and no-change obtained using the model based on Chicago wheat
models, respectively. In each case, the sample corre- prices. This MSE reduction is significant at the 0.3%

5lation of the ARMA forecast errors with the naive to 3% level using the bootstrap test. Since these
model errors is 0.83. Using the results given in errors appear to be zero mean, serially uncorrelated,
Section 2 to generate a large number of gaussian and highly cross-correlated (r 50.99), the 5% criti-
sample pairs, each with sample length 96 and with cal point for testing the significance of this MSE
(r , r , r) equal to (0.00, 0.00, 0.83), 5% of these reduction based on the gaussian simulation formulasx y

pairs yielded sample variance ratios in excess of developed in Section 2 is only 1.14. Thus, it is not
1.21. Thus, assuming that the sample correlations are surprising that the observed 19% MSE reduction is
reasonably accurate and that the forecast errors are apparently significant at the 5% level using the
zero mean, white, and gaussian, a 21% MSE drop bootstrap test.
would be required for significance at the 5% level. That is not the point of this example, however.
This is consistent with an actual 16% MSE drop When they plot these two forecast error series versus
yielding significance at the 5% to 10% level on the time, Robledo et al. find that these time series are
statistical tests. quite likely not gaussian at all due to an outlying

This example underscores a sobering feature of the observation in each error series in 1996III. (The
results in Section 3 above: even a rather lengthy forecast errors for the model based on Chicago wheat
model validation period of nearly 100 observations is prices are plotted in Fig. 1; a plot of the errors based
still barely sufficient to detect as significant an MSE on Kansas City wheat prices is quite similar.) In each
drop of only 15% to 20%. case, the outlier is significant at the 0.02% level on

the usualt test.
Thus, the gaussianity assumption underlying the

5. Example 2: Multivariate wheat market 5% critical point calculation discussed above is
forecasting models probably not a useful approximation for these data.

More importantly, however, this observation also
Robledo, Zapata and McCracken (2000) specify implies thatno statistical test of a null hypothesis

and estimate two cointegrated VAR models for the involving the MSE foreither model is sensibly
U.S. wheat market. These models are derived from a applicable over this model validation period because
dynamic econometric model proposed by Chambers any such test implicitly assumes that the observa-
and Just (1981) in which the market for wheat tions in each forecast error series are at least
(production, domestic wheat consumption, inven-
tories, and exports) is linked to the U.S. mac-
roeconomy. Robledo et al. (2000) analyze the fore-

5casting effectiveness of two such models, one As noted above, the Ashley (1998) bootstrap test quantifies the
uncertainty in the inference significance level due to the finitemeasuring U.S. wheat prices using the price of[2
length of the model validation period used by computing 100soft red winter wheat at Chicago and the other using
significance levels; what is quoted here is the 25 and 75% fractiles

the price of[1 soft red winter wheat at Kansas City. of these 100 significance levels — i.e., the middle 50 computed
They compare rolling forecasts of a number of significance levels lie between 0.003 and 0.030. Diebold–Mariano

variables over several model validation periods and test results are not quoted since there are only 16 observations.
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Fig. 1. Domestic wheat consumption forecast errors, 1996I–1999IV model based on Chicago wheat prices.

identically distributed, an assumption which is ex- 3% to 14% level (with a median of 8%) on the
6tremely suspect in this instance. bootstrap test. Since the sample crosscorrelation

Indeed, when this single pair of forecast error between the two forecast error series is now some-
observations is dropped from the model validation what smaller, the 5% variance ratio critical point
period, the observed MSE drop — still seemingly based on the gaussian simulation formulas from
substantial at 15% — is now only significant at the Section 2 rises to 1.26. Thus, consistent with the

results from the bootstrap test, one might expect to
6Of course, one can always interpret an outlying observation as an need a 26% MSE drop with a model validation
ordinary realization from a highly non-gaussian distribution. The period like this in order for the reduction to be
bootstrap test, being non-parametric, appropriately accounts for

significant at the 5% level.such non-gaussianity in sufficiently large samples. In small
In addition to illustrating the wisdom of alwayssamples, the presence of an outlier will yield a large dispersion in

the bootstrap inference significance levels, as measured by the first plotting the data one uses in any statistical test,
variance of these significance levels around their mean. However, this example also illustrates the general principle that
since outlying observations are easily detectable by other — e.g., any statistical result which seems too good to be true
graphical — means, it is usually preferable to quantify the small-

— in this case, a 19% MSE improvement beingsample uncertainty in the bootstrap inferences using (as was done
significant at the 5% level with only 16 out-of-above) the interquartile range of the bootstrap inference signifi-

cance levels. sample observations — probably isn’t.
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