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The volatility clustering frequently observed in financial/economic time series is often 
ascribed to GARCH and/or stochastic volatility models. This paper demonstrates the 
usefulness of reconceptualizing the usual definition of conditional heteroscedasticity as the (h 
= 1) special case of h-step-ahead conditional heteroscedasticity, where the conditional 
volatility in period t depends on observable variables up through period t – h. Here it is 
shown that, for h > 1, h-stepahead conditional heteroscedasticity arises – necessarily and 
endogenously - from nonlinear serial dependence in a time series; whereas one-step-ahead 
conditional heteroscedasticity (i.e., h = 1) requires multiple and heterogeneously-skedastic 
innovation terms. Consequently, the best response to observed volatility clustering may often 
be to model the nonlinear serial dependence which is likely causing it, rather than ‘tacking 
on’ an ad hoc volatility model. Even where such nonlinear modeling is infeasible – or where 
volatility is quantified using, say, a model-free implied volatility measure rather than 
squared returns – these results suggest a re-consideration of the usefulness of lag-one terms in 
volatility models. An application to observed daily stock returns is given. 
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I. Introduction 

 
In response to the seminal paper by Engle (1982), a vast literature has – and 

continues to grow – on the topic of autoregressive conditional heteroscedasticity.1 
This literature (and related work on stochastic volatility (SV) and random 
____________________ 
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1 See Bollerslev, Chou, and Kroner (1992) and Bollerslev, Engle, and Nelson (1994) for surveys of 
the early work. 
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coefficient autoregressive (RCA) models)2 are motivated by the empirical 
observation that many financial return time series exhibit apparent 
heteroscedasticity which is positively autocorrelated – typically, clustered episodes of 
relatively high variance. This literature is also frequently motivated by an intrinsic 
interest in modeling the volatility of returns for asset pricing purposes. 

All of these approaches, however, are descriptive rather than explicative in nature: 
they provide no insight into why the variance in these financial return series varies 
over time in this way. Nor do these descriptive approaches in any fundamental way 
enhance our understanding of – or our ability to forecast – the process generating 
the returns series itself. Indeed, most ARCH/GARCH frameworks, for example, 
simply assume that the returns series is a martingale difference process. 

This paper examines the proposition that conditional heteroscedasticity can arise 
endogenously, as a natural consequence of nonlinear serial dependence in the 
generating mechanism of the return time series. The key innovation here is to 
sharpen the usual notion of conditional heteroscedasticity, where the current 
variance of the time series is taken to be history-dependent, by defining “h-step-
ahead conditional heteroscedasticity”: 

 
Definition: “h-step-ahead conditional heteroscedasticity” 

A time series ( )y t  is h-step-ahead conditionally heteroscedastic – i.e., exhibits 
“conditional heteroscedasticity at horizon h” – for a value of 1h ≥ , if and only if 

 
var( ( )|{ ( )})y t h y t+  

 
depends on elements of the information set { ( )}y t , where { ( )}y t  consists simply 
of { ( ), ( 1), ( 2), etc.}y t y t y t− − . 

The combination of this definition with a fairly general nonlinear generating 
mechanism for ( )y t  – characterized by an additively separable innovation term 
with a fixed variance – is analyzed below. Two interesting new results emerge in 
Section 2. 

First, one-step-ahead conditional heteroscedasticity ( 1h = ) is shown to be 
impossible in this setting. Thus, the only way that one-step-ahead conditional 
heteroscedasticity can arise in a univariate process with an additive innovation term 
is through a separately-specified mechanism which is arbitrarily tacked onto the 
model for ( )y t  itself in order to drive time evolution in the variance of the 
innovation term. The essentially ad hoc nature of this modeling maneuver is 
particularly apparent in the ARCH/GARCH and SV frameworks. 

____________________ 
2 Harvey, Ruiz, and Shephard (1994) extend the stochastic volatility framework to multivariate 

models and survey this literature. Tsay (1987) surveys (and extends) RCA models, showing that this 
class of models subsumes ARCH/GARCH as a special case. 
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One-step-ahead conditional heteroscedasticity in a time series thus requires 
something beyond such a univariate process with additive fixed-variance innovation 
term. For example, one might posit distinct “states,” in some or all of which the 
innovation variance differs – as in the Markov switching model of Hamilton (1989), 
the self-exciting threshold autogressive (SETAR) models of Tong (1983), and the 
smooth transition threshold autoregressive (STAR) models of Teräsvirta and 
Anderson (1992). Or one might need to consider a multivariate framework, in 
which the conditional heteroscedasticity arises in a driving time series. 

The second result which emerges is that, in contrast, multi-step-ahead 
conditional heteroscedasticity ( 1h > ) is shown to be a natural – indeed, a necessary 
– consequence of nonlinear serial dependence in the generating mechanism of 

( )y t . Thus, this kind of nonlinear serial dependence can provide an endogenous 
explanation for observed variance clustering in a time series. Moreover, this insight 
also suggests an alternative explanation for observed one-step-ahead conditional 
heteroscedasticity: this might be arising as a result of nonlinear serial dependence in 
the mean on a shorter time-scale than the interval at which the process is being 
sampled. 

Note how distinct these results are from the older literature – e.g., Weiss (1986), 
Bera and Higgins (1997), and others – on choosing between an ARCH model or a 
nonlinear model for a time series. The present results show that these authors were 
examining a false dichotomy: with 1h > , conditional heteroscedasticity is a 
straightforward symptom of the nonlinear dependence in the time series. 

In Section 3 these general results are illustrated using a one-term bilinear model 
proposed in Granger and Anderson (1978). Bilinear models have not been shown to 
be of practical use in modeling actual time series – and are not being proposed for 
that purpose here. The simple bilinear example used here does, however, provide a 
particularly clear theoretical illustration of exactly how non-linearity in a model 
endogenously generates multi-step-ahead conditional heteroscedasticy. An 
empirical application to daily returns data for Ford Motor Company is given in 
Section 4, which illustrates the equivalence of non-linear serial dependence and 
multi-step-ahead conditional heteroscedasticity in actual data. In this example, 
evidence is presented for both multi-step-ahead conditional heteroscedasticity and 
for non-linear serial dependence in the Ford Motor Company daily stock returns. 
Further, it is shown that the fitting errors for nonlinear models for these returns 
exhibit either substantially reduced evidence (or no evidence at all) of conditional 
heteroscedasticity. 

Section 5 concludes the paper by suggesting that, in many cases, the ultimately 
most useful response to observed volatility clustering in a time series is to test for 
and model the non-linear serial dependence in the mean which is likely causing it.3 

____________________ 
3 E.g., see Hagiwara and Herce (1999). 
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In addition, even where an ARCH/GARCH or stochastic volatility model 
specification is preferred to non-linear modeling,4 these results suggest a 
consideration of volatility models which omit the lag-one terms. 

 
 

II. General Results 
 
Consider a causal, stationary, single-equation dynamic model for a time series 

( )y t : 
 

1
( ) ({ ( )}) ( ) ( )

k

j j
j

y t f y t j y t j u tα β
=

= + ∑ − − +  (1) 

 
where the notation { ( )}y t j−  denotes the information set consisting of ( ),y t j−  

( 1),y t j− −  ( 2),y t j− − K  etc., so that ({ ( )})jf y t j−  is just a general function of 
the values of the time series prior to and including period t j− .5 The innovation 
series ( )u t  is assumed to be generated by a zero-mean martingale difference 
process with a bounded (and fixed) variance, which is denoted 2σ ; boundedness is 
also tacitly assumed for whatever higher moments of ( )u t  are needed in order to 
ensure that var( ( )|{ ( )})y t h y t+  exists. 

Note that the functions 1({ ( 1)}) ({ ( )})kf y t f y t k− −K  are not assumed to be 
smooth, nor even necessarily available in closed-form. Thus, Equation 1 subsumes 
as special cases a wide variety of non-linear generating mechanisms – e.g., the semi-
nonparametric models of Gallant and Nychka (1987), noisy Mackey-Glass models6, 
and the neural network models analyzed by Teräsvirta, Lin and Granger (1993). It 
also subsumes switching models, such as SETAR and STAR models, but only those 
for which the innovation variance is the same in each state; that is, of course, 
commonly not assumed to be the case for SETAR and STAR models. 

The dependence of ( )y t  on { ( 1)}y t−  is parameterized in this way so as to 
admit of fairly general non-linear dependence in ( )y t  while also allowing for a 
graceful restriction to a linearly dependent specification by merely omitting the 
functions 1({ ( 1)}) ({ ( )})kf y t f y t k− −K . Indeed, the only real restrictions imposed 
by this specification are its univariate nature (although exogenous covariates could 
be easily added) and the assumption that the innovation process is additively 

____________________ 
4 Or where one quantifies volatility in a different way – e.g., using model-free implied volatility 

measures, such as the VIX and related measures advocated by Andersen and Bollerslev (1998). 
5 Stationarity is assumed here in both senses usually accorded this term: It is assumed that all of the 

model parameters and the joint distribution of model innovations are time-invariant and it is assumed 
that ( )y t  has been transformed (if necessary) to be an I(0) time series. 

6 E.g., see Kyrtsou and Labys (2006) for a bivariate example or Kyrtsou and Terraza (2003) for a 
univariate example with ARCH errors tacked on. See also Kyrtsou (2009). 



Richard Ashley: On the Origins of Conditional Heteroscedasticity in Time Series 9 

separable with constant variance. 
The first point to make is that ( )y t  generated by the model of Equation 1 can 

never exhibit any one-step-ahead conditional heteroscedasticity: 
 

Proposition: 
If ( 1)y t+  is generated by the model of Equation 1, then 

 
2var( ( 1)|{ ( )})y t y t σ+ =  (2) 

 
Proof: 

This proposition follows directly from the model of Equation 1 and the definition 
of h-step-ahead conditional heteroscedasticity, with h set to one. In particular, re-
writing Equation 1 for ( 1)y t+ , the information set { ( )}y t  specifies all of the 
random variables on the right hand side of the equation except ( 1)u t+ . Therefore, 
the deviation of ( 1)y t+  from its mean – conditional on { ( )}y t  – is merely 

( 1)u t+ , which has fixed variance, 2σ . 
Thus, one-step-ahead conditional heteroscedasticity in a process with an 

additively separable error term can only arise from either exogenous (unexplained) 
time variation in the variance of this error term – as in ARCH/GARCH and SV 
models – or from an assumed multiplicity of such error terms – as in Markov 
switching and SETAR/STAR models with state-dependent innovation variances. 
These formulations basically assume the result – time-varying variance – at the 
outset, but they do provide possible models for the empirically observed time-
clustering of volatility in many financial/economic time series. 

The new point here is that these formulations are not the only – nor even, 
perhaps, the most informative – way to model such time-clustered volatility. In 
particular, the following theorem demonstrates that any kind of non-linear serial 
dependence of the form given by the model of Equation 1 endogenously generates 
h-step-ahead conditional heteroscedasticity for one or more values of h greater than 
one. This h-step-ahead conditional heteroscedasticity can generate correlated 
clusters of high (or low) volatility without invoking any ad hoc exogenous volatility 
generating mechanism and without positing that the system is characterized by 
discrete states with distinct model error processes. 

 
Theorem 

If { ( )}y t h+  is generated by the model of Equation 1, then 
 

var( ( )|{ ( )})y t h y t+  
min( 1, )

2

1
var( ({ ( )}) ( )|{ ( )})

h k

j j
j

f y t j h y t j h y tβ σ
−

=
= ∑ − + − + +  (3) 
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Proof: 
Re-writing Equation 1 for time period t h+ : 
 

1
( ) ({ ( )}) ( ) ( )

k

j j
j

y t h f y t j h y t j h u t hα β
=

+ = + ∑ − + − + + +  

 
and grouping together the terms which are fixed and the terms which are stochastic 
under information set { ( )}y t  yields: 

 
1

1
( ) ( ({ ( )}) ( ) )

k h

j j j j
j h j

y t h f y t j h y t j hα β β μ
−

= =
+ = + ∑ − + − + + ∑  

1

1
( [ ({ ( )}) ( ) ] ( ))

h

j j j
j

f y t j h y t j h u t hβ μ
−

=
+ ∑ − + − + − + +  

 
where [ ({ ( )}) ( )].j jE f y t j h y t j hμ ≡ − + − + 7 Thus, var( ( )|{ ( )})y t h y t+  is just: 

 
1

2

1
[( [ ({ ( )}) ( ) ] ( )) ]

h

j j j
j

E f y t j h y t j h u t hβ μ
−

=
∑ − + − + − + +  

 
which implies that 
 

1
2

1
var( ( )|{ ( )} var( [ ({ ( )}) ( )]|{ ( )})

h

j j
j

y t h y t f y t j h y t j h y tβ σ
−

=
+ = ∑ − + − + +  

 
since the fact that ( )u t  is a martingale difference implies that the cross term 

 
1

1
[2 ( ) [ ({ ( )}) ( ) ]]

h

j j j
j

E u t h f y t j h y t j hβ μ
−

=
+ ∑ − + − + −  

 
is zero, proving the theorem. 

Thus, the non-linear generating mechanism for ( )y t  given in Equation 1 
implies that the expression (Equation 3) for the conditional variance of ( )y t h+  
contains a term which might well depend on { ( )},y t  implying h-step-ahead 
conditional heteroscedasticity. Corollary 1 makes this observation more explicit for 
the special case where h equals two: 

 
 
 

____________________ 
7 At this point one can either restrict attention to where 1h−  does not exceed the value of k 

defined in Equation 1or simply let the function ( )jf ⋅  be zero for all values of j in excess of k. 
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Corollary 1 
Where h equals two, Equation 3 reduces to: 
 

2
1 1var( ( 2)|{ ( )} var( [ ({ ( 1)}) ( 1)]|{ ( )})y t y t f y t y t y tβ σ+ = + + +   (4) 

 
Thus, if { ( 2)}y t+  is generated by the model of Equation 1, var( ( 2)|y t+  

{ ( )})y t  depends on elements of { ( )}y t  if 1({ ( 1)})f y t+  depends on any 
elements of { ( )}y t . If 1({ ( 1)})f y t+  depends on { ( 1)}y t+  but not on { ( )}y t , 
then it must depend on ( 1)y t+ . In that case – since the function 1( )f ⋅  is not zero 
– Equation 1 implies that ( 1)y t+  depends on ( )y t , and hence on an element of 
the information set { ( )}y t . Thus, in either case, var( ( 2)|y t+ { ( )})y t  depends on 
elements of { ( )}y t  and ( )y t  is therefore two-step-ahead conditionally 
heteroscedastic. 

In contrast, if the function 1( )f ⋅  is a constant ( γ ) – so that ( )y t  depends 
linearly on ( 1)y t−  – then 

 
2 2 2

1var( ( 2)|{ ( )}) var( ( 1)|{ ( )})y t y t y t y tβ γ σ+ = + +  
2 2 2

1( 1)β γ σ= +  

 
where the second equality follows from Equation 2. Clearly, ( )y t  is not two-step-
ahead conditionally heteroscedastic in that case. 

Thus, Corollary 1 implies that any time series ( )y t  driven by additively 
separable constant-variance innovations exhibits two-step-ahead conditional 
heteroscedasticity if and only if ( )y t  depends non-linearly on ( 1)y t− . 

Corollary 2 extends the latter portion of Corollary 1 to horizons larger than two 
by noting that fully linear models – for which the functions 

1({ ( 1)})f y t− K ({ ( )})kf y t k−  are all constants – can never exhibit conditional 
heteroscedasticity at any horizon. This result underscores the role that non-linear 
serial dependence plays in the origin of conditional heteroscedasticity: 

 
Corollary 2 

If { ( )}y t  is generated by the model of Equation 1 but its serial dependence is 
constrained to be linear, so that ( )y t  is the AR( k ) process,  

 

1
( ) ( ) ( )

m

j
j

y t y t j u tα β
=

= + ∑ − +  

 
then { ( )}y t  cannot display h-step-ahead conditional heteroscedasticity for any 
positive value of h. That is, var( ( )|{ ( )})y t h y t+  is a constant which does not 
depend on any of the elements of{ ( )}y t . 
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Proof: 
Noting that the restriction to linear serial dependence implies that the functions 

1({ ( 1)})f y t− K ({ ( )})kf y t k−  are all constants, Corollary 2 follows directly from 
Equation 3. The var( ( )|{ ( )})y t h y t+  is essentially identical to the variance of the 
h-step-ahead forecast of ( )y t , so this result is already long-known in the literature 
on ARMA models; a more detailed proof of Corollary 2 along these lines is thus 
relegated to an appendix. 

Combining these results, it can be concluded that – at least for time series 
generated by models of the form of Equation 1, characterized by an additively 
separable innovation term with constant variance – conditional heteroscedasticity 
cannot arise at horizon one, nor for a linear model at any horizon, but will in 
naturally and endogenously arise in non-linear models for at least some horizons 
exceeding one. The next section illustrates this point by explicitly identifying the 
two-step-ahead conditional heteroscedasticity generated by a simple bilinear model. 

 
 

III. An Illustrative Example: The Conditional 
Heteroscedasticity Generated by  

a Simple Bilinear Model 
 
The Bilinear Model introduced by Granger and Anderson (1978) has not found 

wide use in non-linear time series modeling because of generic problems in 
showing that these models are invertible. This model is not being proposed for 
empirical use here, either. Nevertheless, a simple special case of this class of models 
is ideally suited for illustrating the general results obtained above. 

Suppose, then, that ( )y t  is generated by the particular bilinear model, 
 

( ) ( 2) ( 1) ( )y t y t u t u tβ= − − +     ( )~ . . .(0,1)u t i i d  (5) 

 
Granger and Anderson (1978) show that this model is invertible for 2 1

2 ;β <  that 
is, for these values of β  the model can be recast in the form of Equation 1for 
sufficiently large values of the parameter k . And it is straightforward to show that 
the ( )y t  generated by this model are serially uncorrelated. Yet ( 1)y t+  is 
evidently (non-linearly) forecastable from its own past – ( )y t , ( 1)y t− , ( 2)y t− , 
etc. Indeed, since the unconditional variance of ( 1)y t+  is known to be 21 / (1 )β−  
and the one-step-ahead forecast error variance – var( ( 1))u t+  – equals one, this 
model can have an 2R  approaching one half. 

What sort of conditional heteroscedasticity do the ( )y t  generated by this model 
exhibit? It is troublesome to re-write Equation 5 in the form of Equation 1; this is 
why showing invertibility is generically problematic for bilinear models. But it is not 
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difficult to directly calculate the h-step-ahead conditional heteroscedasticity of ( )y t . 
First, illustrating the general result of Theorem 1, note that the one-step-ahead 

conditional variance of ( )y t  for this model is just the variance of ( 1)u t+ : 
 

var( ( 1)|{ ( )})y t y t+  
2[( ( 1) ( ) ( 1) [( ( 1) ( ) ( 1)|{ ( )}]) ]E y t u t u t E y t u t u t y tβ β= − + + − − + +  

2[( ( 1) ( ) ( 1) ( 1) ( ) ]E y t u t u t y t u tβ β= − + + − −  
2[( ( 1)) ]E u t= +  

var( ( 1)) 1u t= + =  (6) 

 
where this derivation uses the fact that ( ) ( ) ( 2) ( 1)u t y t y t u tβ= − − −  is fixed under 
information set { ( )}y t .  

So the ( )y t  generated by this model do not exhibit any one-step-ahead 
conditional hetereoscedasticity. In contrast, the ( )y t  from this model do exhibit 
two-step-ahead conditional heteroscedasticity:8 

 
var( ( 2)|{ ( )})y t y t+  

2[( ( ) ( 1) ( 2) [( ( ) ( 1) ( 2)]) ]E y t u t u t E y t u t u tβ β= + + + − + + +  
2[( ( ) ( 1) ( 2)) ]E y t u t u tβ= + + +   (7) 

 
Note that ( ) ( 1)y t u tβ +  is a zero-mean random variable under information set 

{ ( )}y t  and will (in the remainder of this derivation below) contribute to the 
conditional variance of ( 2)y t+ . In contrast, the analogous term – ( 1) ( )y t u tβ −  – 
in Equation 6 above for the conditional variance of ( 1)y t+  was fixed under this 
information set. 

Continuing the derivation, 
 

var( ( 2)|{ ( )})y t y t+ 2[( ( ) ( 1) ( 2)) ]E y t u t u tβ= + + +  
2 2 2 2[( ( ) ( 1) 2 ( ) ( 1) ( 2) ( 2) ]E y t u t y t u t u t u tβ β= + + + + + +  

2 2 2 2( ) [ ( 1) ] 2 ( ) [ ( 1) ( 2)] [ ( 2) ]y t E u t y t E u t u t E u tβ β= + + + + + +  
2 2( ) 1y tβ= +  (8) 

 
since 2 2[ ( 1) ] [ ( 2) ] 1E u t E u t+ = + =  and [ ( 1) ( 2)] 0.E u t u t+ + =  Thus, the 
conditional variance of ( 2)y t+  depends directly on the magnitude of ( )y t  so 
long as β  is non-zero – i.e., so long as ( )y t  is non-linearly dependent on its own 

____________________ 
8 To simplify the notation, all expectations in the remainder of this section are taken to be 

conditional on the information set { ( )} { ( ), ( 1), ( 2), }y t y t y t y t= − − K . 



The Korean Economic Review  Volume 28, Number 1, Summer 2012 14

past.9 
 
 

IV. An Empirical Example of Multi-step-ahead 
Conditional Heteroscedasticity and its Relation to  
Non-linear Serial Dependence: Daily Returns to  

Ford Motor Company Stock 
 
Autoregressive conditional heteroscedasticity is commonly observed in financial 

returns time series. Squared daily returns to Ford Motor Company stock, plotted 
below over a sample of 2258 consecutive trading days from January 2, 1998 to 
December 29, 2006, provide a typical example:10 

 
 

 
 

 

Episodes of high volatility are evident in this time plot. So as to examine the 
degree to which this is indicative of autoregressive conditional heteroscedasticity 
and, in particular, of multi-stepahead conditional heteroscedasticity, an AR(p) 
model for the squared value of these daily Ford returns was identified and estimated, 

____________________ 
9 The ( )y t  from this bilinear model also exhibit conditional heteroscedasticity at longer horizons, 

but these results are not particularly revealing. For example, var( ( 3)|{ ( )})y t y t+  equals 
2(1 )β+ + 4 2 2( ( 1)) ( ( ))y t u tβ − . 

10 Returns data are from the Center for Research in Security Prices (CRSP) at the Graduate School 
of Business, University of Chicago. 



Richard Ashley: On the Origins of Conditional Heteroscedasticity in Time Series 15 

yielding the results reported below in Table 1.11 
 

[Table 1] Autoregressions of Squared Ford Motor Company Returns 
(OLS coefficient estimates)12 

 

intercept .00032** 2.391 (.202) 
Lag 1 .076** omitted 
Lag 2 .071** .077** 
Lag 3 .053* .059* 
Lag 4 .084** .088** 
Lag 5 .057** .064** 
Lag 6 .021 .025 
Lag 7 .097** .099** 

2s  1.947 × 10-6 1.957 × 10-6 
2R  .0495 .0444 

 
As is typical of such data, the value of 2R  (adjusted for degrees of freedom) is 

not very high for this model. But the evidence for conditional heteroscedasticity is 
very strong here: the null hypothesis that the coefficients on lags one through seven 
of the squared return series are all zero can be rejected with a p-value less 
than .00005. 

Notably, omitting the lag-one term only slightly diminishes the adjusted 2R  of 
the relationship between squared returns and its own past; from .0495 to .0444. 
Evidently, the bulk of the conditional heteroscedasticity in the Ford Motor 
Company returns series is multi-step-ahead. On the other hand, since the 
coefficient on the squared return at lag one is statistically significant at the 1% level, 
the possibility of conditional heteroscedasticity at lag one cannot be ruled out in this 
case. 

Based on the theorem proven in Section 2, then, one would expect that the Ford 
Motor Company returns series exhibits significant non-linear serial dependence, 
even though this returns series is only very weakly autocorrelated. And indeed this is 
the case. Table 2 lists the results from several tests for non-linear serial dependence 
and, for each of these tests, the null hypothesis that only linear serial dependence is 
present in the returns series can be convincingly rejected. 

____________________ 
11 As is typical with daily stock returns, Ford Motor Company returns themselves – not the squared 

returns – are very weakly autocorrelated. Identification of an AR(p) model for this return series yields a 
value of p equal to one, with an adjusted R2 of just .008 for the estimated model. As will be evident 
from the results given in Table 3, this model is so weak that the results given in Table 1 are not 
materially altered if the squares of the (“prewhitened”) fitting errors from this AR(1) model are used 
instead. 

12 A single asterisk indicates that a coefficient estimate is significantly different from zero at the 5% 
level; a double asterisk indicates that a coefficient estimated is significantly different from zero at the 
1% level. 
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[Table 2] Results of Formal Tests for Non-linear Serial Dependence in Ford Motor 
Company Returns 

 

Test 
p-value for rejecting 

Ho: pre-whitened Ford returns ~ i.i.d. 
BDS < .001 

Hinich Bicovariance < .001 
Tsay .001 

 
These particular tests for non-linear serial dependence in the mean are fairly 

standard – all are documented in Ashley and Patterson (2006, Appendix 1) – but a 
few comments on them are in order here. Each of these tests is actually a test for 
serial independence and hence is applied to the (“pre-whitened”) fitting errors from 
the weak AR(1) model for the Ford Motor Company daily returns series.13 The 
Brock-Dechert-Scheinkman (BDS) test is known to be poorly-sized even in 
samples of this length, so the p-values for all three tests were evaluated using the 
bootstrap. 

The BDS test is a nonparametric test based on an estimate of the correlation 
integral of the time series. In essence, for a time series tx  with standard deviation ε, 
the correlation integral counts up the number of m-histories – each defined as the 
sequence 1{ , }t t t mx x x− −K  – lying within an m-dimensional hypercube of size jε . 
The BDS test is typically done for j equal to .5, 1.0, and 2.0 and for embedding 
dimensions (m) equal to 2, 3, and 4. Simulation results in Ashley and Patterson 
(2006) indicate that – bootstrapping notwithstanding – the BDS test is still missized 
for embedding dimensions exceeding 2.14 That does not actually matter here, 
however, as this time series is so non-linearly dependent (and lengthy) that all nine 
parameterizations of the BDS test yield essentially the same result. 

The Hinich bicovariance test – Hinich and Patterson (1995) – examines the 
squared returns series, tx , for non-linear serial dependence in a different way. This 
test estimates bicovariances – 1[( )( )( )]t r t sE x x x x x x− −− − −  – for values of the 
integers r and s less than or equal to l ; here l  was set to five. These 
bicovariances should all equal zero if the time series is serially independent. 

The Tsay test – Tsay (1986) – examines the squared returns for non-linear serial 
dependence in yet another way, basically by looking for quadratic serial dependence 
using ordinary multiple regression methods. As implemented for Table 2, these 
regressions incorporate lags of up to five days; again, see Ashley and Patterson (2006, 
Appendix 1) for implementation details. 
____________________ 

13 See footnote 10 above. 
14 Values of m>2 are problematic because of occasional under-estimates of the order of the AR(p) 

pre-whitening model; the bootstrapping is done using the resulting fitting errors, so it cannot properly 
account for this contribution to the chance of incorrectly rejecting the null hypothesis. See Ashley and 
Patterson (2006, Appendix 2) for more details on this point. 
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Many additional tests for non-linear serial dependence in the mean have been 
proposed, but the results Table 2 suffice to show that, with this sample length, there 
is very strong evidence for non-linear serial dependence in the Ford returns data – 
exactly as the theoretical results obtained here indicate ought to be the case (for a 
generating mechanism driven by an additive, homoscedastic innovation), in view of 
the evident multi-step-ahead conditional heteroscedasticity observed in this time 
series. 

Table 3 reports results for autoregressions of squared Ford Motor Company 
returns in which the returns have been filtered (prior to squaring) so as to reduce or 
remove the serial dependence in the returns series – weak linear serial dependence 
in the case of the first column of the table, substantial non-linear serial dependence 
in the case of the remaining columns. Thus, the first column of Table 3 reports 
results on an autoregression of the squared residuals from a linear model for the 
Ford Motor Company returns.15 These results confirm that, as is common with 
daily returns series, the linear serial dependence in the Ford Motor Company 
returns is so weak that the choice to use squared returns rather than squared pre-
whitened returns in Table 1 was inconsequential. The remaining columns of Table 
3 report results on autoregressions of the squared fitting errors from three 
nonparametric models for the non-linear serial dependence in the Ford returns. 
Each of these models is discussed, in turn, below. 

The first of these nonparametric models is a standard kernel regression model for 
the Ford returns using eight lags in the Ford returns and a gaussian kernel with a 
fixed bandwidth chosen by the least-squares cross validation method. 16  The 
computational burden for these estimations was very heavy and the resulting model 
fits the data fairly poorly (considering the effort applied) with a raw 2R  of 
only .107. On the other hand, the kernel estimation procedure is numerically robust 
and the results given in Table 3 indicate that the degree of conditional 
heteroscedasticity remaining in its fitting errors is greatly reduced, albeit not 
completely eliminated. 

The second nonparametric model for the Ford Motor Company returns was 
identified and estimated using local-polynomial regression methods. Here a 
quadratic polynomial is fit to the data in a window around each observation using a 
weighting function and a bandwidth chosen to minimize a generalized cross 
validation score; these latter are analogous to the similarly named constructs in 
kernel regression. For a detailed description of the local polynomial regression 

____________________ 
15 The best ARMA specification for Ford returns is an AR(1) model with an adjusted 2R  of 

only .008. 
16 The estimation was done using the “np” package in R – see Li and Racine (2007), Hayfield and 

Racine (2008) for details. The model with eight lags was clearly optimal on either the AIC, SIC, or 
adjusted 2R  criteria. Only fixed-bandwidth results are reported because the algorithms for 
calculating adaptive and generalized nearest neighbors bandwidths do not converge properly. 
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methodology (and the LOCFIT package for R implementing it) see Loader (1999). 
The local-polynomial regression model identified and estimated here used five lags 
in the Ford returns and a smoothing parameter (α ) equal to .87. With a raw 2R  
of .217 this model fits the Ford returns data noticeably better than did the kernel 
regression model, although still not all that well considering the flexibility of this 
model family. LOCFIT is without a doubt the best multivariate implementation of 
local-polynomial regression which is available – and the computational burden it 
imposes is vastly smaller than for kernel regression – but the reader is warned that 
LOCFIT mis-behaves somewhat for models with six lags and fails altogether for 
models with seven lags (in both Linux and Windows versions, with these and other 
data), so this five-lag model specification must be viewed with a good deal of 
skepticism. Be that as it may, the results in Table 3 show that the fitting errors from 
this model exhibit no evidence of conditional heteroscedasticity at lags larger than 
one and, overall, greatly reduced conditional heteroscedasticity compared to that 
observed in the returns series itself. 

The third nonparametric model for the Ford returns was identified and estimated 
using penalized spline regression methods. The penalized spline method 
approximates the mean of the dependent variable by a spline function of the set of 
explanatory variables – i.e., by a piecewisecontinuous patchwork of polynomials – 
so as to minimize an objective function which is the sum of the squared fitting 
errors plus a penalty depending on an estimate of the average smoothness of the 
spline function. This smoothness penalty is parameterized as a linear function of 
the average value of the mth derivative of the spline function; the value of m must 
exceed half the number of explanatory variables in the model. Most 
implementations of penalized spline regression – e.g., Kauermann, Krivobokova 
and Semmler (2008) and Krivobokova and Kauermann (2007) – restrict the analysis 
to either bivariate regression models or to additively separable models; the penalized 
spline regression implementation used here (procedure TPSPLINE in SAS) 
imposes neither of these restrictions. 

The effective number of degrees of freedom consumed in the penalized spline 
fitting process increases sharply as the number of explanatory variables rises, 
however. This is reflected in an adjusted residual variance reported by the routine 
and in a resulting limitation on how many explanatory variables can be included in 
the model for a given sample length. For the Ford Motor Company returns a 
maximum of nine lags was therefore feasible; a seven-lag model minimizes the 
adjusted residual variance and yields an adjusted 2R  of .419. Reference to Table 3 
shows that its fitting errors exhibit no signs of conditional heteroscedasticity at lags 
larger than one.17 

____________________ 
17 At first glance it is a bit surprising that the penalized spline model appears to even eliminate the 

(apparently) significant conditional heteroscedasticity in the Ford returns at lag one. This is likely due 



Richard Ashley: On the Origins of Conditional Heteroscedasticity in Time Series 19 

While the penalized spline model appears to do the best job of modeling the non-
linear serial dependence leading to the conditional heteroscedasticity observed in 
the Ford Motor Company returns, the broader issue of which of these 
nonparametric models is the “best” one is an open question. For example, the 
penalized spline model fits the sample data best, but quite likely it is the most 
severely over-fitted model. Post-sample forecasting could help resolve this issue, but 
that issue is beside the point here: the essential result is that the conditional 
heteroscedasticity in the fitting errors from all three non-linear models for the Ford 
Motor Company returns is either eliminated or substantially reduced compared to 
the conditional heteroscedasticity observed in the returns themselves. 

 
[Table 3] Autoregressions of Squared Fitting Errors From Models of Ford Motor 

CompanyReturns (coefficient estimates)18 
 

 

Linear Model Non-Linear Models19 

AR(p) Model 
{p=1}20 

Kernel 
Regression 

Local 
Polynomial 
Regression 

Penalized 
Spline 

Regression 
intercept .0003283** .0004408** .0004183** .0002361** 

Lag 1 .068** .066** .063** .028 
Lag 2 .080** .074** .024 -.013 
Lag 3 .049* .003 .014 -.014 
Lag 4 .081** -.036 -.001 -.033 
Lag 5 .053** .003 .006 -.025 
Lag 6 .025 -.038 -.007 -.033 
Lag 7 .095** -.017 .116** -.026 

2s  1.929 × 10-6 1.239 × 10-6 1.466 × 10-6 1.990 × 10-6 
2R  .0456 .011 .016 .002 

 
In summary, then, most of the observed conditional heteroscedasticity in the 

____________________ 
to sampling error in the estimated coefficient at lag one in the autoregression of the squared errors 
from the penalized spline model reported in Table 3, as the estimated standard error for this coefficient 
estimate (.021) is substantial. 

18 A single asterisk indicates that a coefficient estimate is significantly different from zero at the 5% 
level; a double asterisk indicates that a coefficient estimated is significantly different from zero at the 
1% level. Returns data are from the CRSP tapes. 

19 See text above for a description of how these three nonparametric models for the Ford returns 
were identified and estimated. Note that the autoregressions reported in this table are linear 
regressions of the squared fitting errors from these non-linear models against lags of these squared 
fitting errors – these are not the non-linear models for the Ford Motor Company returns series! 

20 The results in this column are comparable to (and not statistically different from) those given in 
Table 1. Table 1 reports results on autoregressions of the squared Ford Motor Company returns 
themselves; this column reports analogous results using the squared fitting errors from the weak AR(1) 
linear model for these returns. 
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Ford Motor Company daily returns is at lags greater than one; and there is strong 
evidence of non-linear serial dependence in the these returns over this sample 
period. Finally, the fitting errors for smooth non-linear models which more-or-less 
successfully remove this non-linear serial dependence in the returns series largely or 
completely eliminate its conditional heteroscedasticity, confirming and illustrating 
the result of the theorem proven in Section 2. 

 
 

V. Conclusions 
 
The theoretical results obtained here show that multi-step-ahead conditional 

heteroscedasticity is a natural – indeed, a necessary – result of non-linear serial 
dependence in a time series driven by an additive innovation term with fixed 
variance. In view of the fact that many time series (notably including many financial 
return time series) exhibit substantial evidence of such non-linear serial dependence, 
this result suggests that non-linear serial dependence in the model for the series 
itself might typically be the underlying cause of the volatility clustering observed in 
a number of such time series, in addition to dependence on driving co-variates 
which are themselves conditionally heteroscedastic.21 

In those particular instances where correlated volatility fluctuations are observed, 
but where non-linearity tests – such as those reviewed in Barnett, et al. (1997), 
Kyrtsou and Serletis (2006), and in Ashley and Patterson (2006) – fail to detect any 
evidence of non-linear serial dependence in the mean, then there would seem to be 
little alternative to an ad hoc specification of a separate process driving this serial 
dependence in the volatility of the time series.22 

However, where – as is common – such testing does indicate the presence of 
statistically significant non-linear serial dependence in the mean, the results 
obtained here indicate that the ARCH/GARCH or stochastic volatility modeling 
approaches would appear to be descriptive stop-gaps. Indeed, in such instances, the 
observed evidence for conditional heteroscedasticity – even that obtained using tests 
allowing for non-linearity, such as Blake and Kapetanios (2007) – is indicating that 
explicit modeling of this non-linear serial dependence in the time series is likely 
crucial to correctly understanding its underlying generating mechanism. This non-
linear generating mechanism is then recognizably the source of the time variation in 
both the conditional mean and the conditional variance of the series. This would 
suggest that it might often be more fruitful in such instances to model the non-
____________________ 

21 In other words, there is no need to ‘tack on’ an ad hoc ARCH/GARCH or SV model to generate 
the observed conditional heteroscedasticity in such time series. 

22 As noted in Section 1, if one-step-ahead conditional heteroscedasticity is the most important 
feature of the data, one might also (if possible) decrease the sampling interval or consider multivariate 
modeling. 
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linear serial dependence in the time series itself, rather than to content oneself with 
an auxiliary ARCH/GARCH or SV model of the model innovation dispersion. 

Interestingly, analysts with a strong preference for making ARCH/GARCH or 
stochastic volatility models can also benefit from the insights obtained above. In 
particular, the result obtained here – that nonlinear serial dependence in the mean 
can cause conditional heteroscedasticity only at horizons exceeding one period – 
implies that the status of the lag-one terms routinely included in ARCH/GARCH 
and stochastic volatility model specifications differs from that of terms at longer 
lags: these terms at lag one correspond to a form of conditional heteroscedasticity 
which cannot arise from a non-linear generating mechanism driven by a single 
innovation with a unique, time-independent variance. 
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Appendix: Proof of Corollary 2 
 
If { ( )}y t  is generated by the model of Equation 1 but its serial dependence is 

constrained to be linear, so that ( )y t  is the AR(m) process, 
 

1
( ) ( ) ( )

k

j
j

y t y t j u tα β
=

= + ∑ − +  (A1) 

 
then { ( )}y t  cannot display h-step-ahead conditional heteroscedasticity for any 
positive value of h. That is, var( ( )|{ ( )})y t h y t+  is a constant which does not 
depend on any of the elements of { ( )}y t . 

 
Proof: 

Since var( ( )|{ ( )})y t h y t+  is essentially identical to the variance of the h-step-
ahead forecast of ( )y t , this result is already long known in the literature on ARMA 
models. Equation A1 can be re-written as 

 
( ) ( ) ( )B y t u tϕ α= +  

where 

1
( ) 1

k
j

j
j

B Bϕ β
=

≡ − ∑  

 
The infinite-order lag polynomial 1( ) [ ( )]B Bϕ −Ψ ≡  exists, with weights 
,oΨ 1 ,Ψ 2Ψ  which eventually decline in magnitude sufficiently quickly so that 

2

0
j

j

∞

=
∑ Ψ  is finite because the AR(k) process given by Equation A1 is assumed 

stationary. Multiplying both sides of Equation A1 by ( )BΨ  then yields the 
MA(∞ ) process, 

 

0 0
( ) ( )j j

j j
y t u t jα

∞ ∞

= =
= ∑ Ψ + ∑ Ψ −  

so that,  

0 0
( ) ( )j j

j j
y t h u t h jα

∞ ∞

= =
+ = ∑ Ψ + ∑ Ψ + −  

1

0 0
( ) ( )

h

j j j
j j h j

u t h j u t h jα
∞ ∞ −

= = =
= ∑ Ψ + ∑ Ψ + − + ∑ Ψ + −  

 
Note, however, that Equation A1 implies that { ( )}u t  is fixed under the 
information set { ( )}y t . 

Therefore, 
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1

0
( ) [ ( )|{ ( )}] ( )

h

j
j

y t h E y t h y t u t h j
−

=
+ = + + ∑ Ψ + −  

and hence 
1

2 2

0
var( ( )|{ ( )})

h

j
j

y t h y t σ
−

=
+ = ∑ Ψ  

 
Thus, the h-step-ahead conditional variance is a constant which does not depend 

on any of the elements of { ( )}y t , proving the corollary. 
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