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LINEAR VERSUS NONLINEAR
MACROECONOMIES: A STATISTICAL TEST

By RICHARD A. AsHipy AND DouGLas M. PATTERsON!

A statistical test based on the estimated bispectrum is presented which can
distinguish between the linear stochastic dynamics widely used in macroeco-
nomic models and alternative nonlinear dynamic mechanisms, including both
nonlinear stochastic models and nonlinear deterministic (chaotic) models. The
test is applied to an aggregate stock market index and to an aggregate industrial
production index. In both cases the test easily rejects the null hypothesis of a
linear stochastic generating mechanism. This result strongly suggests that

- nonlinear dynamics (deterministic or stochastic) should be an important
feature of any empirically plausible macroeconomic model.

I. INTRODUCTION

It has recently become possible, by using the estimated bispectrum, to formally
test the null hypothesis that the generating mechanism of a macroeconomic time
series is linear. Such testing is valuable for two reasons.

First of all, most macroeconomic models are linear or loglinear. Rational
€xpectations models, for example, routinely assume that the stochastic process
driving the system is a (linear) VAR process and proceed to generate output series
which are low order AR processes. If we can reject the null hypothesis of a linear
generating mechanism for typical macroeconomic time series, then these models
are misspecified, perhaps seriously.

Why might such misspecification be important? Suppose that a variable x(7) is
generated by the nonlinear mechanism

(1.1 x(1) = Bu(t — Dx(t = 2) + u@r)

where u(r) ~ iid 0, o?). It can be shown (Granger 1980; Granger and Andersen
1978) that the x(¥) so generated are serially uncorrelated. Yet x(7) is clearly
forecastable from its own past using an estimated version of equation (1.1). In fact,
this model can have an R? of up to .50, so the variance of the errors made by the
optimal forecast can be as little as half as large as the variance of the errors made
by the optimal linear forecast, Thus, the assumption that economic agents form
expectations based on linear projections may be a Very poor representation of
rational behavior if the process being forecast is generated by a nonlinear
generating mechanism.

Secondly, it has recently been suggested (Benhabib and Day 1980, 1981, 1982;

' D.M.P. was supported by Contract #N60921-83-G-A 165 B00OS from the Naval Surface Weapons
Center. Both authors wish to thank Jess Benhabib, Melvin Hinich, James Ramsey, Warren Weber, Mike
Woodford, and two anonymous referees for many helpful comments and suggestions.
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Stutzer 1980; and Grandmont 1985) that Samuelson-Gale overlapping generations
macroeconomic models need not be driven by exogenous stochastic variables at all.
In these authors’ work, highly nonlinear deterministic recursions embodying
‘‘chaotic’’ dynamics generate output series which appear to be stochastic. In
particular, Grandmont has developed a deterministic macroeconomic model of this
type which leads to substantially different (more activist) policy conclusions than
do typical rational expectations models. Brock and Chamberlain (1984) have shown
that linear spectral methods are unable to distinguish between the output of a
nonlinear chaotic model and the output of a Lucas-type rational expectations
model. While the bispectral test described below does not directly test for chaotic
dynamics per se, it can distinguish between the outputs of these two models by
testing for the nonlinearity inherent in recursions exhibiting chaotic dynamics.

Thus, a rejection of the null hypothesis of linearity strongly suggests that models
such as Benhabib and Day’s, Stutzer’s, and Grandmont’s deserve serious consid-
eration. Such a rejection would also motivate the application of tests capable of
distinguishing nonlinear stochastic dynamics from deterministic chaotic dynamics.
For example, Brock (1986), Barnett and Chen (1986), and Brock and Sayers (1988)
discuss several descriptive statistics which, while not constituting a formal statis-
tical test, may provide insight into whether the hypothesis that a given time series
is the result of a deterministic chaotic recursion is, or is not, plausibly consistent
with the data. And Brock, Dechert, and Scheinkman (1986) have recently devel-
oped a formal statistical test based on the Grassberger-Procaccia-Takens dimension
estimate which can distinguish i.i.d. random variates from data generated by a
deterministic chaotic recursion.

In our view, however, the important distinction is not between stochastic versus
chaotically deterministic dynamics, but rather between linear versus nonlinear
dynamics. This notion, first proposed in Ashley and Patterson (1985), is no longer
controversial. Indeed, the main thrust of Brock, Dechert, and Scheinkman (1986) is
to further develop methods used in testing for chaotic behavior for use in testing for
nonlinear dynamics of all sorts. After all, everyone (even Grandmont 1985, p. 1039)
recognizes that actual macroeconomic time series are in fact stochastic. Thus,
empirically, stochastic modelling is necessary in either case. The crucial issue is:
what sort of stochastic dynamics is appropriate? If the underlying dynamics are
highly nonlinear, then the standard linear rational expectations macroeconomic
models (e.g. Lucas 1972, 1975) are probably quite misleading. In that case,
modifying them to be more realistic will probably represent a movement in the
direction of the nonlinear chaotic models. Consequently, we focus below on
detecting nonlinearity in aggregate economic time series.

The bispectral nonlinearity test mentioned at the beginning of this section is
discussed in Section 2. In Sections 3, 4, 5, and 6 below we show that the bispectral
test can detect a wide variety of nonlinear generating mechanisms, both stochastic
and deterministic. In Sections 7 and 8 we apply the bispectral test to the historical
record on two important economic time series: an aggregate asset price series (a
widely used index of stock market returns) and an aggregate output series (the
index of industrial production in the U.S. manufacturing sector). The null hypoth-
esis of a linear generating mechanism is strongly rejected for both series.
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2. A BISPECTRAL TEST FOR DETECTING NONLINEARITY IN TIME SERIES

Subba Rao and Gabr (1980) and Hinich (1982) have both developed statistical
tests, based on the estimated bispectrum, for the detection of nonlinearity in a time
series. Below we describe and use the Hinich test because it explicitly exploits the
asymptotic distribution of the bispectral estimator. Also, Patterson (1983) has
developed a computer algorithm implementing the Hinich test and Ashley, Patter-
son and Hinich (1986) have shown that the test has considerable power to detect
stochastic nonlinear dynamics in sample sizes as low as 256.

The bispectrum of a time series is defined as follows. Let {x(z)} denote a
third-order stationary time series, where ¢ is an integer. To simplify exposition, let
Elx(t)] = 0. The third order cumulant function is then

Ceex(m, n) = E[x(t + n)x(t + m)x(t)].

The bispectrum at frequency pair (f;, f>) is the double Fourier transform of ¢, (m,
n):

Q.0 BAfifa= 2 2 Crexlm, n)exp[—i2a(fim+ fon)].

n=-—x m=-—x

It is a spatially periodic complex function whose principal domain is the triangular
set ) = {0 <f, <1/2,f, <fy,2f, +f> < 1}. Arigorous treatment of the bispectrum
is given by Brillinger and Rosenblatt (1967).

Since a complete description of the Hinich nonlinearity test based on the
estimated bispectrum can be found in Hinich (1982), Hinich and Patterson (1985)
and Ashley, Patterson and Hinich (1986), a detailed exposition of the implementa-
tion of the test will not be presented here; a condensed exposition can be found in
the Appendix. For present purposes it suffices to note that the standardized
bispectrum (2 ¥2( f|, f,), defined in equation A.6) is a constant for all frequency
pairs ( f, and f5) if the generating mechanism of {x(#)} is linear.

3. ARTIFICIAL DATA: 1. STOCHASTIC HICKS ECONOMY

The bispectral test is only useful if it has significant power to detect the kinds of
nonlinear generating mechanisms one might expect to find in economic models.

Our first example is data generated from a modification of a much-studied model
in the business cycle literature due originally to Hicks (1950). Hicks’ theory, in
brief, is an elaboration of the Samuelson multiplier-accelerator theory to include a
floor level of investment (I ) and a ceiling level of output (Y .).

Blatt (1978) has shown that data generated by such a nonlinear model can be
analyzed using the usual (linear) econometric methods, yielding results which give
no hint of the underlying nonlinearity of the process generating the data. Blatt’s
model is deterministic (as was Hicks’) and yields precisely periodic cycles. We
modified his model to eliminate this counterfactual feature by adding a small
stochastic error term to the investment equation, yielding:
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Clt) =a+m[Y(t—1)]
Ity =max {Iy, [, +o[Y(tr — 1) — Yt = 2)T} + v(9)
Y(¢) = min {Y, C(t) + I(£)} with
v(f) ~ NIID[0, (.1)%].

We generated observations on Y(z) using the same parameter values as Blatt—
ie.v=2Y.=40,a=.2,m= 861,=0,and I., = 3. A typical realization of
this process with 512 observations yields the estimated standardized bispectrum
plotted in Figure 1 over the triangular principal domain defined in the Appendix.
For clarity’s sake, all values of the estimated bispectrum outside this principal
domain are set to zero in the plot. This was done because—due to the symmetry
inherent in B, ( f|, f,) as defined in equation A.l—the points outside the principal
domain merely repeat the information within the principal domain. A few of the
contours spill over a bit beyond the principal domain nevertheless; this is due to the
smoothing algorithm used by the plotter.

The estimated standardized bispectrum of the observations on Y(¢) is clearly not
flat within the triangular principal domain. Is the estimated standardized bispec-
trum significantly nonflat? The nonlinearity test statistic for this realization is Z =
4.30. (Z is defined in equation A.15 in the Appendix.) Since Z ~ N(0, 1) under the
null hypothesis of a linear generating mechanism, we can reject the null hypothesis
at the .001 percent level.

We conclude that the bispectral test can detect the kinds of nonlinearity which
capacity and nonnegativity constraints induce.

4. ARTIFICIAL DATA: II. NONLINEAR DETERMINISTIC DYNAMICS

As noted in the introduction, a good deal of attention is currently focused on a
particular class of deterministic nonlinear generating mechanisms yielding so-called
“‘chaotic’” dynamics. In this section we examine the ability of the bispectral test to
detect the kinds of nonlinearities inherent in such dynamics.

Chaotic dynamical systems are characterized by deterministic recurrence rela-
tions of the form

x(t+ 1) = G(x(1))

such that the sequence {x(¢)} tends toward neither an equilibrium point nor a limit
cycle. (Technically, the system has a ‘‘strange attractor.”” See Ruelle and Takens
1971; Li and Yorke 1975; Brock 1986; Barnett and Chen 1986; and Ramsey and
Yuan 1987, for further details.) Bunow and Weiss (1979) list four chaotic recursions
which have received explicit attention in the literature.?

. Logistic: x,,; = rx,(1 — x,) 0<r=4.
2. Exponential Logistic: x,,, = x, exp [r(1 — x,)] r> 0.

2 See Pohjola (1981) for an application of the logistic recursion to a Goodwin-type growth cycle model.
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3. Triangular: x,,, = 1 — 2Ix, — 1/2I.
4. Cubic: x,,; = x, + ax,(x? — 1).

Example time series, generated from the logistic and exponential logistic
recursions were plotted for a variety of values of the parameter r. These series did
not resemble typical economic data in that certain values (ca. 0 and 1 for the logistic
recursion, ca. 0 for the exponential recursion) were substantially more prevalent
than all other values. A typical series for the logistic recursion with r = 4 yielded
the estimated standardized bispectrum plotted in Figure 2. As was typically the
case with the logistic-type series, the estimated standardized bispectrum was small
with an occasional very large value. The test statistic Z (defined in equation (A.15))
is ill-suited for detecting such spikes because the 80 percent quantile ignores the
largest 20 percent of the sample of standardized bispectral estimates, but the
non-constancy of the standardized bispectrum in these cases is obvious by
inspection. Thus, the estimated bispectrum is likely to detect these models, but
they are unlikely candidates for economic modelling since their output so little
resembles typical economic data.?

In contrast, the triangular recursion yields time series which look quite like many
stationary economic time series. (See Figure 3 for an example.) The recursion
output is uniformly distributed, whereas most economic data looks more gaussian,
but at least its distribution is smooth. The estimated standardized bispectrum for
this series is plotted in Figure 4. It obviously has significant dispersion over the
frequency pairs. Using a sample size of 456 (typical of the monthly postwar record)
this dispersion is reflected in a Z statistic of 3.35. Z is a unit normal under the null
hypothesis of a linear generating mechanism, hence the null hypothesis is rejected
at the .04 percent level.*

The cubic recursion looks like economic data only for values of a close to 4. As
it stands, our test is not useful in detecting this form of nonlinearity, however. In
fact, our simulations show that the estimated bispectrum of data generated from
this model converges to zero at all frequency pairs as the sample size increases.
Evidently, the population third-order cumulants are zero in this case due to the
particular symmetry of the model. We conjecture that a test based on this property
or on a higher-order estimated polyspectrum would detect this form of chaotic
dynamics, but such a test might well require more data than is available in the
postwar monthly record.

We conclude that the estimated bispectrum is capable of detecting many (albeit
not all) of the simple forms of chaotic dynamics which have been considered in the
mathematics literature. Chaotic behavior has also been shown to arise in more
complex models which are of explicit economic interest. In particular, in the next

* In addition, we found that minor rounding errors in the computations of these logistic-type
recursions caused a prompt decay to an equilibrium point at zero or one. We eliminated this problem by
using integer arithmetic, but we note that the knife-edge behavior of these recursions makes it unlikely
that they could ever be observed in economic processes.

4 The triangular recursion yields trajectories which appear to be white noise. Sakai and Tokumaru
(1980) show that simple variations on this recursion yield trajectories which are apparently AR(1)
processes.
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section we examine the ability of the bispectral test to detect nonlinear dynamics in
an ISLM macro model.

5. ARTIFICIAL DATA: III. A NONLINEAR KEYNESIAN MODEL

Day and Shafer (1985) have shown that chaotic behavior can easily arise in the
standard, fixed price Keynesian macroeconomic model with a nonlinear investment
schedule.
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A specific example of one of the models they consider is:
GNP Identity: Y(z + 1) = Min {C[Y()] + I[r ()] + A, Y capacity},
Consumption Function: C[Y(r)] = BY(s) with 0<B < 1.

Investment Function; Ilr @] = plr” = r @OYrl) 0=r() s”r '
0 r(t)>r

Money Demand Function: M) = kY(t) + Ar (£) — r¥] r=r=0.

This money demand function implies an LM curve with the usual shape. Note that
the investment schedule is downward sloping in the interest rate with a floor of
zero. In short, this model is consistent with the usual textbook presentation.

Day and Shafer give a sufficient condition on the parameters of this model for the
sequence {¥()} to be chaotic.> The parameter choices ¥ 2P = 100, A = 13, B=
T, =1500,r"=25r=0l,M=40,k=2,and A = 4.8 satisfy this sufficient
condition. These parameters lead to steady state values of 96.7 for ¥, 67.7 for C, 16
for 1, and .24 for r. These are reasonable for a high output, high interest rate
economy.

We simulated this model over 456 periods, the length of the monthly post war
record. The first 100 values of the resulting Y(#) sequence are plotted in Figure 5. No
particular claim as to realism is made here for this sequence (actual GNP is trended
and much smoother); none is necessary in any case since this model is obviously
highly stylized. However, the sequence does appear to be stationary non- gaussian
noise. The correlogram and partial correlogram look quite ordinary; this series
would no doubt be modelled as an AR(4).

Applying the bispectral test to these data yields the estimated standardized
bispectrum plotted in Figure 6. The resulting test statistic is Z = 2.39, so that the
null hypothesis of a linear generating mechanism can be rejected at the 1 percent
level. Thus, the (chaotic) nonlinear dynamics in this determlmstlc Keynesian model
are easily detected by the bispectral test.

6. ARTIFICIAL DATA: IV. NONLINEAR STOCHASTIC DYNAMICS

In Section 3 we examined the ability of the bispectral test to detect a specific type
of nonlinear stochastic generating mechanism of particular economic interest. Time
series analysts have explicitly considered a number of additional nonlinear stochas-
tic generating mechanisms. While these mechanisms have arisen in noneconomic
contexts, they may be important in economic modelling as well.

Ashley, Patterson and Hinich (1986) have used simulation methods to estimate
the power of the bispectral test for detecting many of these mechanisms. Here we
present a very brief summary of those results.

* This is Proposition 3 in their paper. Note that a needed minus sign is missing from the right hand side
of equation 9.
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Letting &{r} ~ NIID(0, o ?), the particular models they considered are:

. Bilinear: x(¢) = &(¢) + .7e(t — D)x(t — 2).

. Nonlinear MA: x(¢) = £(t) + .8¢(t — De(t — 2).

. Extended Nonlinear MA: x(r) = &(r) + .8&(t — 1) 2%, (.8)/2¢(r — ).
. Nonlinear AR: x(¢) = [.5 + .5&(t — DIx(t — 1) + ().

. Threshold AR: x(#) = —.5x(r = 2) + e(t) ifx(t — 1) < 1,

x(t) = 4x(t — 1) + &(r) otherwise.

0o a0 o

f. Nonlinear Threshold AR: x(r) = —(.1 + .4lx(t — DDx(z — 1) + () if
Ix(t — DI <=1,
x(t) = =.5x(t — 1) + () otherwise.

g. Exponential AR: x(r) = (.9 + .1 exp [-x%(t — DDxtr — 1) — (2 +
1exp [—x2(t — DDx(t — 2) + ().

Ashley, Patterson and Hinich give explicit references to the literature for each of
these models. Table 1 summarizes their results on the power of the bispectral test,
averaged over 250 simulations, for data generated from each of the eight models.
These results show that the bispectral test has substantial power to detect many of
the kinds of nonlinear generating mechanisms which have appeared in the time
series literature.
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- TABLE 1
POWER OF 5 PERCENT BISPECTRAL TEST

Model Sample Size

256 312 1024

a, Bilinear .78 .96 1.00

b. NL MA .54 .75 .96
¢. Extended NL

MA 71 92 1.00

d. NL AR .76 .95 1.00

e. Threshold AR 33 .55 .80

f. NL Threshold AR 01 .01 .00

g. Exponential AR .03 .00 .00

7. HISTORICAL DATA: I. COMMON STOCK RETURNS

We tested two economic time series for nonlinearity using the bispectral test,

The first time series is the daily percentage change in the CRSP value-weighted
common stock index. (CRSP denotes the Center for Research in Security Prices at
the University of Chicago.) This index includes all common stocks listed on the
New York or American Stock Exchange. Using a sample of 1,000 trading days from
January 20, 1981 to December 31, 1984, the estimated standardized bispectrum is
plotted in Figure 7. The resulting test statistic is Z = 4.02, so that the null
hypothesis of a linear generating mechanism for this time series can be rejected at
the .003 percent level.s

8. HISTORICAL DATA: II. INDEX OF INDUSTRIAL PRODUCTION

The second economic time series analyzed is the monthly growth rate in the
index of industrial production for the U.S. manufacturing sector as reported by the
Federal Reserve Board. We first analyzed this time series in seasonally adjusted
form. Using 456 observations from February 1947 to January 1985, the bispectral
test yielded Z = 4.58, which is significant at the .002 percent level. We then
analyzed this series in seasonally unadjusted form, to rule out the possibility that
the test was detecting some nonlinearity in the seasonal adjustment process. The
behavior of the unadjusted series is dominated by a deterministic calendar
effect—e.g., the growth rate is substantially below the mean every July. (As
mentioned in Section 2, the theory underlying the bispectral test assumes that the
time series is stationary. The effect of the nonstationarity in this case was to induce
absurdly large peaks in the estimated bispectrum at certain seasonal frequency
pairs.) We corrected for this calendar effect by regressing the series against 11
monthly dummy variables.” The estimated standardized bispectrum of the resulting

6 Related evidence of serial dependence (i.e. non i.i.d.ness) in stock returns can be found in Ashley
and Patterson (1986) and Scheinkman and Le Baron (1986).

7 Since the sample size is large, it is reasonable to neglect the sampling variance in the estimated
coefficients in this regression. Note that the purpose of this (linear) deseasonalizing filter is to remove a
deterministic nonstationarity in the series, not to filter out seasonal autocorrelations. The latter is
unnecessary since the equivalence theorem proven in Ashley, Hinich, and Patterson (1986, p. 174) shows
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{apparently stationary) time series is plotted in Figure 8. The bispectral test yielded
Z = 4.85, which is significant at the .0001 percent level.?

9. CONCLUSIONS

We find that the bispectral nonlinearity test resoundingly rejects the null
hypothesis of a linear generating mechanism for both the aggregate stock market
index and the aggregate industrial production index. We conclude that at least these
key macroeconomic aggregates are the output of a nonlinear dynamic system.

This result is consistent with the nonlinear deterministic (chaotic) dynamics
proposed by Benhabib and Day, Stutzer, Day and Shafer, and Grandmont. It is also
consistent with nonlinear stochastic dynamics, including (but not limited to)
bilinear models, stochastic models with inequality constraints, and ARCH in mean
models.

This result is not consistent with linear stochastic dynamics. This implies that the
linear (loglinear) macroeconomic models usually considered are misspecified.
While we cannot at this point quantify how serious this misspecification is, our
results are so strong that it is likely that the nonlinearities involved are quite
sizeable. If so, then the linear models in common use today may be very
misleading.

Finally, from a theoretical point of view, these results also imply that the linear
forecasting rules usually invoked to generate ‘‘rational’’ expectations in modern
macroeconomic models are in fact suboptimal. Consequently, such expectations
are not, strictly speaking, rational.

Virginia Polytechnic Institute and State University, U.S.A.

APPENDIX
THE HINICH BISPECTRAL NONLINEARITY TEST

Let {x(¢)} denote a third-order stationary time series, where ¢ is an integer. To
simplify exposition, let E{x(#)] = 0. The third order cumulant function is defined to
be

Crxx(m, n) = E[x(t + n)x(t + m)x(1)].

The bispectrum at frequency pair (f;, f5) is the double Fourier transform of ¢
n):

.‘.’XX(m’

that the standardized bispectrum is invariant to any linear filter. Thus, the only problem associated with
sampling errors in the estimated coefficients of the deseasonalizing filter is that they allow small amounts
of deterministic (nonstationary) seasonality to remain in the deseasonalized series. The estimated
bispectrum of the series deseasonalized in this way shows no evidence of such nonstationarity, however.

8 Recently, Brock and Sayers (1988) have reported significant rejections of the null hypothesis of
linearity applying the Brock-Dechert-Schienkman test to prewhitened deseasonalized monthly data on the
index of industrial production for all sectors.
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(A BAfi,fa)= 2 2 Cexlm,n)exp[—2m(fim + fon)].

n=-—x m= —x

It is a spatially periodic complex function whose principal domain is the triangular
setQ ={0<f, <12,f> <f,,2f, +f> < 1}. Arigorous treatment of the bispectrum
is given by Brillinger and Rosenblatt (1967).

Suppose that {x(#)} is linear, that is, it can be expressed as

=®

(A.2) x(r) = z a(n)u(t — n),

n=0

where {u(#)} is purely random (i.e. stationary and serially independent) and the
weights {a(n)} are fixed. Assuming that = _, la(n)| is finite, the bispectrum of {x()}
is

(A.3) B (f1, f2) = u3A(fDA(S)AM(f1+ 1)
where w5 = E[*(1)],

=®

(A.4) A(f) = 2 a(n) exp (—i2mfn),

n=20
and A*( f) is its complex conjugate. Since the spectrum of {x(#)} is
(A.5) S () =aANP,
it follows from (A.3) that

_ 1B (f1, fI? R
TS AAISAEISfiHf) of

i

(A.6) VA f1, fD)

for all f, and f, in Q.

The left hand side of (A.6) defines the square of the skewness function of {x(#)},
W( f1, f>). Thus, the squared skewness function is a constant if {x(¢)} is linear. This
property is the basis for the Hinich linearity test.

The bispectrum of the stationary process {x(z)} can be consistently estimated
using a sample {x(0), x(1), ..., x(N — 1)} as follows. Let

(A7) F (J, k) = X(jIN)X(KIN) X*((j + K)IN),
where j and k are integers and

N-1

(A.8) X(jINY = 2, x(t) exp (—i2mjtIN).
t=0

X(0) is a set to zero; this is equivalent to subtracting off the sample mean of {x(#)}.
F.(J, k) is an estimator of the bispectrum of {x(z)} at frequency pair (j, k).
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However, it must be smoothed—averaged over adjacent frequency pairs—in order
to obtain the consistent estimator, B, (m, n)'

. mM — 1 nM — 1
(A.9) Bm,my=M"? 3 2 Fud. k).
. j=m=0M k=(- 1M
B_(m, n) is the average value of F(j, k) over a square of M? points, where the
centers of the squares are defined by the lattice

L={2m-1)MR2, Qn—UO)M?2: m=1,....,n and m<NR2M—n/2 + 3/4}

in the principal domain.

This averaging procedure is precisely analogous to smoothing the periodogram to
obtain a consistent estimator of the spectrum. As in that case, smoothing reduces
the finite sample variance at the cost of introducing bias. Let

) B.(m, n)
(A-10 X = NS (g m)Sn @S g m s DT
where
(A.11) 9;= (2j - )MI2N)

and S is the usual (smoothed) estimator of the power spectrum of {x()}. Hinich
(1982) shows that the estimators 21X, I are asymptotically distributed as inde-
pendent, non-central chi-squared variates [i.e. y2(2, A )] with non-centrality
parameter

(A.12) X =2(NIM?) ~ B, (m, IS (m)S,(n)S . (m + n)]

for all m and » such that the lattice square lies entirely within the principal domain.
Below, P denotes the number of such frequency pairs; also, we will refer to
21X, ,1? as the estimated standardized bispectrum.

Under the null hypothesis that {x(s)} is linear, equation (A.12) implies that An
is a constant independent of m and n. This constant is consistently estimated by

(A.13) io={22 > IX,,,,,,P/P}—z.

If the null hypothesis is true, then the estimators 2|)A(m‘,,12 (asymptotically)
constitute P independent picks from the x?2(2, Xo) distribution. They should
therefore have a sample dispersion consistent with that distribution. In contrast, if
the null hypothesis is false—so that {x(r)} is not the result of a linear filter applied
toi.i.d. noise—then the A ,, ,’s are not all the same. Consequently, the observations
on the estimated standardized bispectrum (i.e. on the values of 2|)A(m,,,lz) are P

! Hinich (1982) showed that consistent estimation of B (f,,f,) requires N*° < M < N. However, the
Ashley, Patterson and Hinich simulation results showed that the finite-sample size of the nonlinearity test
converges to the asymptotic size more quickly for values of M = 7N,
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independent picks from non-central chi-squared distributions with differing non-
centrality parameters. Therefore, they should have a sample dispersion exceeding
that expected under the null hypothesis of linearity.

This dispersion can be measured in many ways. Based on the simulation results
reported in Ashley, Patterson and Hinich, we use the 80 percent quantile of the
empirical distribution in the results reported below. This statistic is robust with
respect to outliers and its asymptotic sampling distribution is easily calculated. In
particular, David (1970), Theorem 9.2 shows that the sample 80 percent quantile,
3‘8, is asymptotically distributed as N(£ 4, o2), where o 2 is consistently estimated
by

(A.14) 6= 81— 8)f ¢ P !,

and ¢ 4 is the population 80 percent quantile of ¥2(2, A,), and f(-) is the density
function of y2(2, A,). Thus,

(A.15) Z=E¢g6,~NO, 1)

under the null hypothesis that the time series {x(¢)} is a realization of a linear
process as in (A.2).
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