
1 
 

 

International Evidence On The Oil Price-Real Output Relationship:  

Does Persistence Matter?
*
 

 

Richard Ashley, Virginia Tech 

Kwok Ping Tsang, Virginia Tech 

 

August 28, 2013 

Abstract: The literature on the relationship between real output growth and the growth rate in 

the price of oil, including an allowance for asymmetry in the impact of oil prices on output, 

continues to evolve.  Here we show that a new technique, which allows us to control for both this 

asymmetry and also for the persistence of oil price changes, yields results implying that such 

control is necessary for a statistically adequate specification of the relationship.  The new 

technique also yields an estimated model for the relationship which is more economically 

interpretable.  In particular, using quarterly data from 1976 – 2007 on each of six countries 

which are essentially net oil importers, we find that changes in the growth rate of oil prices 

which persist for more than four years have a large and statistically significant impact on future 

output growth, whereas less persistent changes (lasting more than one year but less than four 

years) have no significant impact on output growth.  In contrast, ‘temporary’ fluctuations in the 

oil price growth rate – persisting for only a year or less – again have a large and statistically 

significant impact on output growth for most of these countries.  The results for the single major 

net oil producer in our sample (Norway) are distinct in an interesting way. 
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1. The Oil Price-Output Relationship 

Empirical support is mixed for the impact of the price of oil on US macroeconomic variables.  

Since the 1980s, there have been numerous studies on this relationship, but results are sensitive 

to both the sample period and the model specification.  Mixed results aside, one conclusion is 

generally accepted: allowing for asymmetry in the relationship is important, and increases in oil 

price are more important than decreases.   

 We contribute to this large empirical literature by considering the persistence of the 

changes in oil price.  We argue that the growth rate in output responds differently to a temporary 

change in the growth rate of oil than to a relatively more persistent one.  Nordhaus (2007) points 

out two major channels by which the oil price can affect output.  First, an increase in oil price 

induces inflation; if the central bank tightens monetary policy as a response, then output drops as 

a result.  Second, an increase in oil price can impact consumers as a tax increase.  Both of these 

mechanisms are arguably stronger if the oil price change is permanent rather than transitory.     

As is fairly standard in this literature, the basic specification considered in this paper is: 

                     (1) 

where       is the real GDP growth rate from the current quarter to the next and     is the 

change in logarithm of the nominal oil price from the previous quarter to the current one;   is 

often allowed to differ for positive versus negative values of   .  We show below that it is 

important to decompose the oil price change     into more and less persistent components, and 

that their impacts on the macroeconomy are different. 

 The literature on the oil price-real output relationship is too broad to be fully reviewed 

here, so we focus in this section on briefly describing studies which are closely related to this 

paper.  (See Hamilton (2008) for a recent survey.)  Hamilton (1988) provides a theoretical 

framework for why the relationship between oil price and output is asymmetric: When the 

growth rate of oil price goes up, durable consumption growth drops, as consumers choose to 

postpone their purchases.  But when the growth rate of the price of oil goes down, durable 

consumption growth does not necessarily rise.  Mork (1989) provides evidence that allowing for 

this asymmetry – i.e. for different coefficients on price increases than on price decreases – is 

important.  In particular, he finds that price decreases have little impact on US real output.  
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Hooker (1996), however, finds that lagged oil price changes do not explain current output growth 

after 1973, which suggests that either the relationship is unstable or, equivalently, that his model 

specification is problematic.  Even allowing for asymmetry in the relationship, he still finds a 

poor fit using data subsequent to 1986.  More recent studies focus on allowing for different 

forms of nonlinearity: Hamilton (1996) suggests that an oil price increase needs to exceed a 

threshold in order to have an impact; Ferderer (1996) and Jo (2012) argue that oil price volatility 

matters; Lee, Ni and Ratti (1995) suggest that an oil price increase needs to be unexpected; and 

Davis and Haltiwanger (2001) consider price changes sufficiently large as to make the price of 

oil surpass its previous five-year average.  Hamilton (2003) uses a flexible functional form and 

confirms that both asymmetry and the “surprise” element are important.  Finally, recent studies 

by Cunado and Perez de Gracia (2003), Jiménez-Rodríguez and Sánchez (2005) and Jiménez-

Rodríguez (2009) also focus on the (asymmetric) nonlinearity in the relationship. 

 Kilian (2009) uses a structural VAR model to distinguish oil price movements that are 

induced by structural demand or supply shocks.   These two shocks are shown to have different 

effects on income growth.   In particular, a positive demand shock can drive up both income and 

oil price.  The conclusion of their paper is that, during periods when both types of shocks are 

present, it is problematic to treat oil price changes as exogenous and only consider one-

directional causality from oil price to income.
1
    

 Miller and Ni (2011) model the deviations from trend – deterministic and stochastic – of 

the oil price (  ) as the sum of two change series:  a component    
  (“updates to the long-term 

average price”) obtained from an oil market model in levels, and a component    
  (essentially 

defined as the remainder of    ) and interpreted as the “unanticipated” portion of    .  In 

essence, one could say that they use an unobserved-components model – similar to a Beveridge-

Nelson (1981) decomposition – to extract these two updates to a latent stochastic trend in    and 

find that these two components have different impacts on future real GDP growth. 

 The present paper statistically decomposes     in a new way, along a different dimension 

than the decomposition considered by Kilian (2009) and Miller and Ni (2011): here the impact 

                                                            
1 Ordinary spectral regression yields inconsistent parameter estimates where feedback is present; the moving-

window technique used here allows for possible feedback by decomposing oil price changes using an effectively 

one-sided filtering.  This is described in the latter portion of Section 3.1 below. 
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on quarterly real growth is examined based on three components of    , each of which 

corresponds to fluctuations of a clear-cut level of persistence.
2
  One component contains all 

sample variation in     identifiable as either a smooth nonlinear trend or as stochastic 

fluctuations with a persistence level corresponding to frequency components with a periodicity 

larger than four years.  The second component comprises all sample variation in     with a 

persistence level corresponding to frequency components with a periodicity greater than one year 

and less than or equal to four years.  And the third component comprises all sample variation in 

    with a persistence level of a year or less.  These three components can be said to ‘partition’ 

the sample variation in     into these three persistence levels, as they are constructed so as to 

sum up to the original data on    .  Hence, by replacing     in Equation (1) by a linear form in 

these three components, it is straightforward to decompose the real-growth impact of     by 

persistence level. 

 Section 2 describes the international data used here in estimating both Equation (1) and 

variations on it allowing for distinct (and asymmetric) responses to the components of    , 

partitioned into the three persistence levels discussed above.  Section 3 describes and motivates 

the way in which this partitioning is done, based on frequency domain regression methods 

developed in Ashley and Verbrugge (2007) and Ashley, Tsang and Verbrugge (2012).  Results 

on real GDP growth rates for the seven countries examined here are discussed in Section 4. 

 

2. Data Description 

Output growth       is the quarterly growth rate of real GDP for Australia, Canada, France, 

Japan, Norway, the United Kingdom and the United States; Norway is included so that the 

analysis also considers a net oil exporter.
3
  This constitutes a representative sample of developed 

countries for which ample     data are available, omitting Germany due to its reunification 

                                                            
2 See also Wei (2012), there the focus is solely on Japan. 
3 See the US Energy Information Administration website at http://www.eia.gov/countries/index.cfm?topL=exp for 

net oil export data on these countries.  Canada and/or the UK are considered net oil exporters by some authors – e.g., 

Jiménez-Rodríguez and Sánchez (2005) – and this is, to one degree or another, the case for portions of the sample 

period considered here.  In our empirical results Canada and the UK appears to ‘behave’ in the same way as do the 

countries which are clearly net oil importers, whereas the results for Norway are significantly distinct.  Therefore, 

the grouping made at this point is used below, without substantial further comment. 

http://www.eia.gov/countries/index.cfm?topL=exp


5 
 

during the period considered here.
4
   All growth rates series are obtained from the St. Louis 

FRED database in annualized and seasonally adjusted form.   

The oil price change series (   ) used here is the annualized quarterly growth rate (in 

current US dollars) of the average of the of UK Brent Light, Dubai Medium and Alaska NS 

Heavy spot prices, all extracted from the International Monetary Fund’s International Financial 

Statistics database.
5
  The availability of each series and the sample period used for each in the 

empirical analysis are reported in Table 1a. 

 A time plot of     using data from 1952Q2 to 2011Q2 is given in Figure 1a.  The impact 

of a number of political and economic events during this period is evident in the graph: the Arab 

oil embargo in 1973, the Iran-Iraq War in 1980, and the Persian Gulf War in 1990 all coincide 

with large spikes in the oil price growth rate series.  Also evident is a large oil     drop during 

the collapse of OPEC around 1986 and an even larger drop in 2008, the latter of which clearly 

corresponds to the global recession of that year.  Thus, as noted in Kilian (2009), substantial 

feedback (as distinct from unidirectional Granger causality) is likely present in the relationships 

between    and     considered here.
6
   

A prominent feature of Figure 1a is the infrequency and small size of the fluctuations in 

    early in the available data set.  Because of this, and because of the singular nature of the 

events in world oil markets in the early 1970’s, the sample actually used here is truncated to 

begin in 1976Q1.  Similarly, because the global macroeconomic fluctuation in 2008 so severely 

impacted both world oil markets and all seven national economies, the observations subsequent 

to 2007Q4 are also dropped from consideration, so as to prevent this event from having an 

inordinate impact on our results.
7
  The data on     for the resulting sample period (1976Q1 to 

                                                            
4 See Berument, Ceylan and Dogan (2010) for an analysis for the Middle Eastern and North Africa countries. 
5 Using oil price in constant dollars or using the West Texas Intermediate (WTI) spot price yield almost identical 

results.  The oil price series are monthly, so we use the last month of each quarter to construct quarterly oil price 

series; using the average oil price over all three months also yields very similar results, which are available upon 

request.   For simplicity (and because the analysis is in any case done entirely at a quarterly level), the windowed 

frequency decomposition described in Section 3 is applied to the quarterly oil price data. 
6 The possibility of feedback in a time-series relationship invalidates most frequency-domain-based regression 

methods.  Notably, the approach used here is not vulnerable in this regard, because it is based entirely on one-sided 

filtering; this point is further discussed in Section 3 below.  
7 Analogous results additionally including the later sample data are collected in an appendix available from the 

authors, but are notably less interpretable: this single set of fluctuations in 2008 leads to a number of apparently-

significant coefficient estimates with perverse signs.  Ordinarily, one might consider allowing for the 2008 
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2007Q4) is plotted in Figure 1b and still contains ample sample variation.  Finally, note (in Table 

1a) that the data for France and Japan starts later on – in 1980Q1, when their real output growth 

series begin.      

 

3. The Frequency-Dependence Approach 

3.1 Description of the Method 

The technique of modeling frequency dependence used here was originally developed by Tan 

and Ashley (1999a and 1999b) and further developed by Ashley and Verbrugge (2009).
8
  The 

Ashley-Verbrugge approach is uniquely well-suited to the present application because – unlike 

other methods based on Fourier frequency decompositions – it is still valid in the presence of 

feedback in the relationship.  It also does not require any ad hoc assumptions as to which 

frequencies correspond to a “business cycle” frequency band, etc.
9
   

The remainder of this section briefly describes the procedure used here to decompose a 

time series (   , in the present instance) into frequency components.  To simplify the notation, in 

this section the dependent variable is denoted as    and the vector of explanatory variables is 

denoted as   .  We begin with the usual multiple regression model: 

                  (2) 

 

where   is    ,   is     and   is a     vector of errors.
10

  Now define a     matrix  , 

whose         element      is: 

                                                                                                                                                                                                
turbulence using dummy variables.  That option is essentially infeasible here because the decomposition of      into 

frequency components uses 16-quarter moving windows so as to yield a one-sided filtering – see Section 3 for 

details.   Because these extraordinary fluctuations are so close to the end of the data set available, it seemed 

preferable to present results on a truncated sample rather than replace these data artificially with interpolated values. 
8 The idea of regression in the frequency domain can be traced back to Hannan (1963) and Engle (1974) – see 

Ashley and Verbrugge (2009) for details. 
9 The allowed frequencies are aggregated in the results presented here into three frequency bands primarily for 

expositional clarity; disaggregated results are available from the authors. 
10 Note that, while linear in β, Equation (2) is sufficiently general as to subsume a nonlinear (e.g. threshold 

autoregressive) or a cointegrated relationship.   
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  (3) 

 

This matrix embodies what is known as the “finite Fourier transform.”  It can be shown that   is 

orthonormal, i.e.      .   

Pre-multiplying the regression model in Equation (2) by   yields: 

                                (4) 

 

While the dimensions of (y
*
, X

*
, and u

*
) are the same as those (y, X, and u), the   components of 

   and    and the   rows of    now correspond to frequencies (denoted by index s = 1 … T) 

instead of to the time periods, t = 1 … T.
11

 

 The   frequency components corresponding to the     column of the X
*
 array are 

partitioned into m = 1 … M frequency bands by means of    “dummy variables”              , 

each of which is a vector of dimension    .  Each element of D
*m, j

, the dummy vector for 

frequency band m, is defined to be equal to the corresponding element of vector   
  if that 

                                                            
11 Reference to Equation (3), however, shows that s equal to two and three both refer to the same frequency – 
because there is both a “cosine” and a “sine” row in A.  Similarly, s equal to four and five also both refer to the same 

frequency, and so forth.  Thus, s runs from 1 …  T and does index frequencies, but there are only T/2 distinct 

frequencies.  The error terms   and    are different from each other but they are distributed identically because   is 

orthonormal. 
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element corresponds to a frequency in band m; otherwise D
*m, j

 equals zero.
12

  The regression 

model of Equation (4) can then be written as: 

      
           

    

 

   

    (5) 

where    
  is the    matrix with the     column deleted and     is the   vector with the     

component deleted.  If the     component of   in the regression model is not frequency 

dependent, then            .
13

  

Because the dependent variable y
*
 in Equations (4) and (5) is in the frequency domain, 

and therefore more challenging to interpret, we pre-multiply both sides of Equation (5) by the 

inverse of   (which is simply its transpose), to obtain:   

               
   

 

   

   (6) 

The dependent variable,    and the     columns of X remaining in X!j in Equation (6) are 

identical to those in the original model of Equation (2); the only difference is that the     variable 

in the original model is now replaced by   new explanatory variables          , each with its 

own coefficient.  Each of these   variables can be viewed as a bandpass-filtered version of the 

    column of the original   matrix.   

One important property of this decomposition of the explanatory variable Xj into the   

variables           is that these filtered components add up precisely to the original variable.  

That is:               .  Thus, to test if there is frequency dependence in the effect of the 

    regressor on  , one need only test the null hypothesis that            .   

                                                            
12 The asterisk is included in the superscript of D*m, j  to emphasize that elements of this vector refer to frequency 

rather than to time periods; the “j” is included so as to specify that components of this dummy variable are equal to 

either zero or to elements of the vector   
   

13 If, as is not the case here, one wants to allow for the possibility that    also varies across the M frequency bands 

for some     , then dummy variables               could be defined in an analogous manner. 

. 
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As with other Fourier transformation based band-pass filters, however, this 

decomposition of Xj based on the   transformation mixes up past and future values.  

Consequently – as is shown in Ashley and Verbrugge (2007) – the   frequency component 

vectors           are correlated with the model error term u if there is feedback between   and 

Xj, leading to inconsistent OLS estimators for           in Equation (6).  This is a particularly 

compelling issue in the present context in view of the Kilian (2009) result – alluded to in Section 

1 – that feedback is likely present between    and   .  Ashley and Verbrugge (2007, 2009) 

eliminate this problem by modifying the procedure so as to yield a solely one-sided 

transformation of the data.  In particular, they apply the decomposition procedure described 

above to just the data on the     explanatory variable which lies inside a small moving window, 

keeping only the most recent values of the   frequency components           calculated for 

this particular window.  This modification implies that the           series actually used in 

estimating Equation (6) are the result of a one-sided rather than a two-sided band-pass filtering, 

eliminating this possible feedback-induced inconsistency in the OLS estimators of          .    

Note that each window yields one set of observations on          ; thus, there are     

observations available for use in estimating Equation (6). 

A good feature to this windowing is that the result of the first row of this, now much 

smaller, A matrix operating on a subset of Xj produces a “zero frequency” first component for Xj
*
 

which is the sample mean of Xj using only the data from this window.  Thus, the first component 

of D
1, j

 is simply a moving average of the data on Xj as the window passes through the sample 

data, modeling in this way any (possibly nonlinear) smooth trend in the data, corresponding to a 

time-evolving estimate of the relevant agents’ perceptions as to the most-persistent (“permanent”) 

component of  Xj. 

A second feature of this windowing is that the lowest non-zero frequency which can be 

resolved (corresponding to rows two and three of the A matrix) corresponds to fluctuations in Xj 

with a reversal-period equal to the window length.  This implies that any frequency components 

in Xj with a period larger than this window length are going to be indistinguishable from the 

deterministic moving-average trend corresponding to the “zero frequency” first component.  On 

the other hand, a window of length, say 16 quarters, consumes 15 observations at the beginning 

of the sample, which would otherwise be available for parameter estimation.   



10 
 

In fact, the window size is chosen to be sixteen quarters in length for the present 

application; this turns out to be sufficiently long that the results are not sensitive to this choice, 

but one must bear this indistinguishability in mind when interpreting the results. In particular, 

with the 16-quarter window used here, fluctuations with a “reversal period” in excess of four 

years long are not distinguishable from the moving average trend component: both are included 

in the decomposition of    as part of its “zero-frequency” component.  Section 3.2 below 

provides more detail (and intuition) on the meaning of the frequency components in the context 

of a simple example with a ten-period window. 

In addition, when decomposing    using fairly short windows, one must deal with the 

standard problem of “edge effects” near the window endpoints.  Following Dagum (1978) and 

Stock and Watson (1999), this problem is resolved by augmenting the data for each window with 

projections for one or two time periods.  In the results quoted below, each sixteen-quarter 

window uses fifteen quarters of sample data and one projected value (for the sixteenth quarter) to 

produce the frequency components for the current period, i.e. for the fifteenth quarter of the 

window.  The projection model used here for forecasting this last (projected) value is an AR(1) 

model estimated over the first fifteen sample observations in the window.  (Using projections for 

two quarters at the end of each window yielded essentially identical results:  these were obtained 

using fourteen actual sample values in each window and using an AR(1) model estimated over 

these fourteen observations to project the last two values.  In that case the resulting frequency 

components for    correspond to the fourteenth window time period.)  The            estimates 

and inference results are generally not sensitive to either the choice of the projection length (so 

long as it is small, but at least equal to one quarter), nor to the order of the projection model 

used.
14

 

                                                            
14 The partitioning of Xj into frequency components as described above might appear to be a bit complicated, but it is 

very easy in practice, as readily-usable Windows-based software is available from the authors which inputs the 

sample data on Xj, the window length, the number of projections used in the window, and the order of the 

autoregressive model used in making the projections; it outputs the M frequency components –           – as a 

comma delimited spreadsheet file.  An ideal projection model would utilize all information available at time t, but 

the AR(p) projection model specification makes the implementing software simpler and easier to use.  Fortunately, 

the estimates of           are not very sensitive to exactly how the projections are done. 
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With a window size of sixteen quarters, one can decompose the oil price growth rate (   ) 

into at most nine components.
15

  It is possible to use all nine components in the regression.  But 

in order to make the results easier to interpret (as well as to economize on the degrees of 

freedom), we regroup the nine components into three: a low-frequency component    
 , which 

contains the components of     corresponding to fluctuations with periods of more than sixteen 

quarters (i.e. the zero-frequency or “trend”  component); a medium-frequency component    
 , 

which contains the components of     corresponding to fluctuations with periods larger than 

four quarters but less than sixteen quarters (i.e. the second, third and fourth possible frequencies); 

and a high-frequency component    
 , which contains the components of     corresponding to 

fluctuations with periods of four quarters or less (i.e. the fifth through ninth possible frequencies).  

This grouping of frequency components is summarized as follows: 

Row of   1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16 

Period of 

Fluctuation 
> 16 quarters 

16 

quarters 

8 

quarters 

5.33 

quarters 

4 

quarters 

3.2 

quarters 

2.67 

quarters 

2.29 

quarters 

2 

quarters 

Group 

Low-freq. 

component 

   
  

Medium-freq. component 

    
  

High-freq. component  

   
  

 

These three grouped components still add up to the original series,    .  The low-

frequency component contains the fluctuations in the oil price growth rate which appear to last 

more than four years, the high-frequency component contains fluctuations that appear to last one 

year or less; and the medium-frequency component contains everything in between.
16

   

These three components are plotted in Figure 2, for a partitioning using one projection 

quarter in each window.  (Instead using two projection quarters in each window yields virtually 

                                                            
15 Reference to the definition of the A matrix in Equation (3) with T set to sixteen clarifies this statement.  The first 

frequency component (from the first row of A, with s equal to one) is just the sample mean for this window; it 

corresponds to a frequency of zero.  The second and third components both correspond (via the second row in A 

involving cosines and the third row in A involving sines) to the first non-zero frequency, the fourth and fifth 

components both correspond to the second non-zero frequency.  And so forth, leading up to the fourteenth and 

fifteenth components – from the fourteenth and fifteenth rows of A, respectively – which both correspond to the 

seventh non-zero frequency.  Finally (since sixteen is even) there is only one row of the A matrix for the largest (T/2 

or eighth) non-zero frequency component – leading to nine possible frequencies in all. 
16 The explanatory variable     is not highly persistent.  If it had been, then any trend-like component within the 

window would have substantial effects on the “medium frequency component”.  In such cases one might want to 

include some of the smaller non-zero frequencies in the “low frequency component.”   
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identical plots and very similar regression results.
17

)  These components would be precisely 

orthogonal to one another except for the use of a moving window.  As explained above, this 

windowing ensures that the results are not adversely impacted by any feedback which might be 

present in the output versus oil-price relationship; it also allows for graceful nonlinear trend 

removal (in the zero-frequency component of    ) via the windowed moving average.  The 

sample correlations between these three components of     are still quite small, however: 

          
     

  = 0.037,           
     

  = -0.038, and          
     

  = 0.112.  Note that all 

three components (as one would expect) display significant sample variation, but that the time 

variation in the low-frequency component is smoother than that of the medium-frequency 

component, which in turn is smoother than that of the high-frequency component.   

 

3.2 The Appeal of this Frequency-based Approach to Disaggregation by Persistence Level 

The objective of the partitioning of an explanatory variable time series – whether it is called    to 

be more parallel to other possible regressors or called     so as to make it more specific to the 

oil price model of Equation (1) – is not the band-pass filtering per se.  Rather, the point of 

decomposing     into the components    
 ,    

 , and    
  is entirely to make it possible to 

separately estimate the impact of fluctuations in     of distinctly different persistence levels on 

the growth rate of real output (yt) and to thereby allow inferences to be made concerning these 

differential impacts.   

No representation is made here that the band-pass filtering proposed above is in some 

sense “optimal” – e.g., as in Koopmans (1974) or Christiano and Fitzgerald (2003).  Nevertheless, 

our method of decomposing a time series    into   frequency components has several very nice 

properties, which make it overwhelmingly well-suited to the present application: 

1) The   frequency components which are generated from    by construction partition it: that is, 

these   components add up precisely to the original observed data on   .  This makes estimation 

                                                            
17 The sample correlations between the components obtained using two instead of one projection quarter are 0.936, 

0.999, and 0.989 for the low, medium, and high-frequency bands, respectively; this correlation (while still high) is a 

bit lower for the low-frequency band because the zero-frequency component is in that case a fourteen-quarter 

moving average instead of a fifteen-quarter moving average. 
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and inference with regard to frequency (or ‘persistence,’ its inverse) dependence in the 

coefficient βj particularly straightforward. 

2) Due to the moving windows used, this particular way of partitioning of    into these   

frequency components is via a set of entirely backward-looking (i.e., “one-sided”) filters.   This 

feature is essential to consistent OLS estimation of the coefficient βj in the – here, quite likely – 

circumstance where there is bi-directional Granger-causality (feedback) between y and   .  

3) And, finally, this partitioning of    into frequency components is not just mathematically valid 

and straightforward: it is also intuitively appealing.
18

  The next section illustrates this with a 

simple example. 

 

3.3 An Explicit Example with a Short Window 

An example with a window ten periods in length illustrates the sense in which the 

frequency components define above are extracting components of    of differing levels of 

persistence.
19

  Table 2 explicitly displays the multiplication of the matrix   – whose         

element is given in Equation (3) – by the ten-component sub-vector of    corresponding to a 

window beginning in period twenty one.   

The first component of this matrix product corresponds to what one might call the “zero-

frequency” component of this subsample of   .  Note that the “Period” column in Table 2 is 

essentially just the reciprocal of the frequency corresponding to the sine or cosine used in the 

                                                            
18 The Christiano-Fitzgerald (2003) bandpass filter could in principle be repeatedly applied to the    data in a given 

window; the filter could then be iteratively applied to the remainder from the previous repetition, only with a 

different lower bound for the frequency band at each iteration. This rather unwieldy procedure would yield a 

decomposition of the explanatory variable whose frequency components still add up to the original data on   .  Note, 

however, that such a decomposition would be more complicated, less intuitively appealing, and in fact no more 

“optimal” than ours.   
19 A window ten periods in length is sufficiently large as to illustrate the point, while sufficiently small as to allow 

Table 2 to fit onto a single page; the actual implementation in Section 4 uses a window sixteen periods in length, so 

that the medium-frequency component can subsume fluctuations with a reversal period of up to four years. 
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corresponding row of the   matrix.  The first entry in this column of Table 2, corresponding to a 

frequency of zero, is thus arbitrarily large.
20

   

The first row of the   matrix is just a constant, so the operation of this row on the ten-

vector sub-component of    is in essence just calculating its sample mean over these ten 

observations.  Thus, the zero-frequency component of    is actually just a one-sided (or “real-

time”) moving-average nonlinear trend estimate.  As noted earlier, this “zero-frequency” 

component is also subsuming any stochastic fluctuations in    at frequencies so low 

(periodicities or persistence so large) as to be invisible in a window which is only ten periods in 

length. 

The next two rows of   (and hence the next two components of the matrix product) both 

correspond to a periodicity of ten quarters because in both cases the elements of the   row vary 

per a sine or cosine which completes one cycle (“period”) in ten quarters.  Thus, the second and 

third components of     will both be small for any variation in    which basically reverses itself 

within a few quarters, whereas these two components will be large for any variation in    takes 

circa ten quarters to reverse itself – i.e., for variation in    which is “low-frequency.”
21

  In 

contrast, looking at the tenth row of the   matrix, it is evident that the inner product of this row 

with a slowly-varying    sub-vector will yield only a small value for the tenth component of    , 

whereas an    sub-vector which corresponds to a high-frequency fluctuation – i.e., which 

reverses in just a quarter or two – will contribute significantly to the tenth component of    .   

Thus, the first rows of the   matrix are distinguishing and extracting what are sensibly 

the “low-frequency,” or “large period,” or “highly persistent” – or ‘permanent’ – components of 

this ten-quarter    sub-vector.  And, concomitantly, the last rows of the   matrix are 

distinguishing and extracting what are sensibly the “high-frequency,” or “small period,” or “low 

persistence” – or ‘temporary’ – components of this    sub-vector. 

 

                                                            
20 Technically, the frequency is 2π divided by the period of the corresponding sine or cosine, but that detail is not 

important here. 
21 The first few lowest frequency components model any trend-like behavior in the data within the window. 
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4. Results and Discussion 

Re-specifying Equation (1) for each country so as to explicitly allow for asymmetry in the 

response to oil price growth rate fluctuations yields: 

                           
       

     (7) 

  

This is essentially the standard specification in the literature, e.g., from Hamilton (1983) through 

Hamilton (2008).
22

  Two lags of     are included so as to allow for serial correlation in the 

model errors in all seven countries; for several countries inclusion of just one lag yields model 

fitting errors with statistically significant serial correlation.  Output growth in Equation (7) can 

respond to an increase in the growth rate of the oil price (   
 ) differently than to a decrease 

(   
 ), but this specification does not allow for differential responses to fluctuations in     with 

differing levels of persistence.
23

   

 Using the methodology described in Section 3 above, the     time series is here further 

decomposed by persistence level into low, medium, and high-frequency components:    
 ,    

 , 

and    
 .  This yields the model specification: 

                             
           

           
   

        
           

           
       

(8) 

Each frequency component of     is itself separated into its positive and negative values in 

Equation (8).  Thus, for example,    
   

 equals    
  in each period for which    

  is non-negative 

and is zero otherwise, whereas    
   

 equals    
  in each period for which     

  is negative.  

                                                            
22 It is particularly reasonable to model this relationship in terms of growth rates rather than levels, as it is not 

possible to reject the null hypothesis of unit root in either    or    on an augmented Dickey-Fuller (ADF) test for 

any of these countries.  This standard specification in terms of growth rates is almost certainly preferable even if 

these ADF tests are incorrectly failing to reject, as both levels series are clearly quite persistent – see discussion in 

the Appendix, available from the authors.  Also, the Johansen test provides no evidence for cointegration between 

  and   ; for this reason (only) an error-correction term is not included in Equations (7) or (8); using a different test 

(and a different sample period), Ghosh, Varvares, and Morley (2009) finds cointegration in the 4-vector (  ,   , 
hours, and productivity) for the US. 
23 The time series    

  is defined to equal in     in every time period for which the     is greater than or equal to 

zero; the time series    
   is defined analogously.  The value of     is zero in only six instances during the course of 

the samples on the seven countries. 
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Thus, this model specification allows for both asymmetry and for differential responses to oil 

price growth rate fluctuations with varying levels of persistence.
24

 

These two model specifications are estimated via OLS using sample data from each of 

the seven countries – Australia, Canada, France, Japan, Norway, United Kingdom and the United 

States – using (as described in Section 2) the sample period 1976Q1 to 2007Q4 in each case, 

except starting in 1978Q1 for Norway and in 1980Q1 for Australia and France; this sample 

yields 120 observations for Norway, 112 observations for Australia and France and 128 

observations for the rest of the countries.  Heteroscedasticity and strong cross-country cross-

correlations in the model errors are allowed for by treating the seven regression equations as a 

system of seemingly unrelated regressions (SUR) and thereby re-estimating the regression 

coefficient standard errors.
25

  Serial correlation in the model errors (ut) is eliminated by including 

a pair of lagged dependent variables in the model for each country. 

This paper is actually all about the model specification of Equation (8), allowing for 

frequency (persistence) dependence as well as asymmetry in the coefficient on    .  For 

comparison, however, we first present results on the model specification of Equation (7), which 

allows for asymmetry only; these results are reported in Table 3.   For four of the countries 

(Australia, Canada, the UK, and the US) there is no real evidence for rejecting either Ho: β+ = 0 

or Ho:     = 0; that is, neither an increase in the oil price growth rate (    > 0) nor a decrease in 

the oil price growth rate (    < 0) appears to have any impact on the real output growth rate for 

these four countries in this model specification.  The    estimate for France is statistically 

significant and has the (negative) sign expected for an oil-importing country – that is, a drop in 

                                                            
24 Because of the lagged dependent variables in Equation (8) – included so as to ensure that the model error ut is 

serially uncorrelated – the coefficients on the various components of     should be interpreted as ‘impact 
multipliers’ rather than as ‘long-run multipliers.’  There is no contradiction, however, in positing that the current 

impact of a low-frequency (‘permanent’) fluctuation in     differs from the current impact of a high-frequency 

(‘temporary’) fluctuation in    .  Also, cointegration is not usually considered for specifications in this literature, 

but (as noted in Footnote #22 above ) the methodology used here does not preclude inclusion of an error-correction 

term in the model specification; here no error-correction term was found to be necessary. 
25 This was accomplished using use the Stata suest post-estimation command.  This technique exploits the cross-

equation model error correlations, so as to obtain better estimators of the coefficient standard errors; it also makes it 

possible to test joint null hypotheses involving coefficients from more than one country.  We are not, however, using 

Zellner’s SURE estimator; Zellner’s estimator can increase parameter estimation efficiency, but requires an 

assumption of homoscedastic model errors for each country.  Here the suest routine corrects the standard error 

estimates with respect to within-country heteroscedasticity of any form. 
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the oil price growth rate enhances real growth.  On the other hand, the    estimate is not 

statistically significant and the null hypothesis that       cannot be rejected.  

In contrast, for Japan and Norway, either    or    is statistically significant, but has a 

positive sign.  One would ordinarily expect that a change in the oil price growth rate would have 

the opposite impact on an oil-importing country’s real output growth rate; thus, all of the 

coefficients on oil price growth rates are expected to be negative, at least for countries which are 

net importers of oil.  Of course, Norway is actually a major net exporter of oil,
26

 so this 

statistically significant and positive value for    is not anomalous for Norway.  But the 

statistically significant positive estimate of    for Japan is hard to rationalize.  Below, however, 

we show that this anomaly disappears once one controls for differing persistence levels in the 

   
  and    

  values for Japan. 

The last three lines of Table 3 give the p-values at which – jointly over all seven 

countries – one can reject the null hypothesis of symmetry (     ), the null hypothesis that 

positive values of     have no impact (   = 0), and the null hypothesis that negative values of 

    have no impact (  = 0).  These joint hypothesis tests are making use of the fact that the 

seven country-specific regression models are being treated as a system of equations in estimating 

the coefficient standard errors.
27

  These three entries in Table 3 also report p-values for the 

analogous joint hypothesis tests in which the portions of the joint null hypothesis relating to 

Japan and Norway (the two countries with individually significant coefficient estimates with 

‘perverse’ sign) are omitted.  The symmetry null hypothesis and the null hypothesis that positive 

values of     have no impact (   = 0) are no longer rejected once Japan and Norway are omitted, 

indicating that the results on these two countries are driving those two results.  The null 

hypothesis that negative values of     have no impact (  = 0) can still be rejected at the 1% 

level because of the strong result to this effect in the regression model for France. 

We next turn to the results, which are the point of present work, based on the 

specification given in Equation (8).  These results are summarized in Table 4, and disaggregate 

                                                            
26 Norway imports little oil compared to the amount it exports.  Canada also is a net exporter of oil, but it imports 

almost as much as it exports; for simplicity of exposition, Canada will be grouped with the oil-importing countries in 

the exposition below. 
27 This technique also exploits the positive cross-equation correlations in the model errors to yield notably smaller 

estimated coefficient standard error estimates; see Footnote #25 above. 
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the coefficients on    
  and    

   into the three persistence levels defined in Section 3:  a 

superscript of “L” indicates fluctuations with a period in excess of four years, or “low-frequency” 

fluctuations; a superscript of “M” indicates fluctuations with a period in excess of one year but 

less than or equal to four years, or “medium-frequency fluctuations”; and a superscript of “H” 

indicates fluctuations with a period of less than or equal to one year, or “high-frequency” 

fluctuations 

The first thing to notice in the Table 4 results, now allowing β+ and β- to vary with the 

persistence level of the corresponding    
  and    

   variables, is that the ‘perverse’ coefficient 

on    
  for Japan is no longer present.  In fact, except for Norway, none of the coefficients on 

   
      

         
       

      
           

   
 is both statistically significant and positive.  In this 

sense the richer model specification of Equation (8), disaggregating    
  and    

  by persistence 

level, is already an improvement on the asymmetry-only model of Equation (7). 

Because it is a major net exporter of oil, for Norway a statistically significant positive 

coefficient is not surprising.   It is interesting, however, that this is the case only for     : the 

other coefficient estimates for Norway are either statistically insignificant or (for     ) 

statistically significant and negative.  These results suggest that Norway responds as an oil 

exporter would to a moderately-persistent increase in    , but that it responds as oil-importing 

country might to a drop in     which is seen as ‘temporary’ –  i.e., which is expected to persist 

only a year or less.  But Norway responds in this fashion only to oil price growth rate drops, 

whereas – as will be noted below – the oil importing countries respond in this way to low-

persistence oil price growth rate increases. 

Turning now to the Table 4 results on the other six (oil-importing) countries – i.e., 

omitting consideration of Norway – there are two ways to organize a summary of these results: 

by the sign of     and by the persistence level (L, M, or H) in    .   

First, considering how the results vary with persistence level, note that there is no 

evidence for any impact of either    
   

 or    
   

 on    : evidently the growth rate in oil prices 

affects a country’s real output growth rate only for either high-frequency (‘temporary’) 

fluctuations (of a year or less) or for low-frequency (‘permanent’) fluctuations more than four 

years in length.   
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Thus, frequency dependence is in fact a prominent feature in this relationship; this 

conclusion is amply borne out by the formal hypothesis test results quoted in Table 5.  In 

particular, not that – while the “no-frequency-dependence” null hypothesis is not rejected for the 

six net-oil-importing countries individually – the evidence against this null hypothesis is 

compelling when the regression results for these six countries are appropriately combined to test 

the joint hypothesis for all six countries simultaneously. 

Next, we focus on just the high-frequency oil price growth fluctuations (i.e., on the 

impact of either    
   

 and    
     in the six net oil-importing countries.  Here there is strong 

evidence of asymmetry in the relationship: a high-frequency increase in the growth rate of oil 

prices has a statistically significant negative impact on real output growth in Canada, France, the 

UK, and the US – with weaker impacts of the same sign in Australia and Japan.  In contrast, 

there is no evidence that a high-frequency decrease in the growth rate of oil prices has any 

impact on the real output growth rate in any of these six countries at even the 5% level. 

There is also strong evidence for asymmetry in the low-frequency oil price growth 

fluctuations (i.e., on the impact of either    
   

 and    
     in the six net oil-importing countries, 

but of a more complicated form.  In particular, for highly-persistent    fluctuations, there is a 

mixture of statistically significant results.  Oil price growth rate increases (   
     in Australia 

and the US have a negative impact on real output growth which is both statistically and 

economically strong, but the impact of oil price growth rate decreases (   
     is not statistically 

different from zero in these two countries.  Whereas – in France and the UK – it is low-

frequency oil price decreases which have a statistically and economically significant impact (in 

the opposite direction) on real output growth.
28

 

Again, the formal hypothesis testing results given in Table 5 confirm these asymmetry 

conclusions, in a statistically compelling way for the hypothesis tests which are formulated 

jointly over all six net-oil-importing countries. 

 

                                                            
28 We prefer to err on the side of under-interpreting the significance of the      estimate for Japan because this one 

coefficient estimate was no longer statistically significant when two projection quarters were used (instead of one) in 

the moving window utilized for partitioning     into persistence components; our other results are qualitatively 

independent of such modeling choices. 
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5. Concluding Remarks   

We find that a model specification for the growth rate in real output allowing only for 

asymmetry in the coefficient on the oil price growth rate (   ) – i.e., Equation (7) – can mislead 

one into thinking that changes in     have either no statistically significant impact or a perverse 

effect on real output growth.  For example, someone considering only the results in Table 3 

might well conclude that positive values of     have no impact on real output growth in 

Australia, Canada, France, the UK and the US and that a negative value for     has a statistically 

significant impact with a perverse sign in Japan.   

In contrast, our results in Table 4 show that – allowing for frequency dependence in the 

real output growth rate model, i.e., for varying responses to different levels of persistence in 

sample fluctuations in    
  or    

 – yields results which are both statistically significant and 

economically explicable.  Broadly, for the six countries (Australia, Canada, France, Japan, the 

UK and the US) which are not major oil exporters : 

a) High-frequency (‘temporary’)     increases, which typically reverse within one to four 

quarters, depress real output growth rates, whereas high-frequency     decreases appear 

to have little impact on real output growth rates. 

b) Mid-frequency     changes (in either direction), which typically reverse within one to 

four years, appear to have little impact on real output growth rates. 

c) And low-frequency (‘permanent’)     changes have statistically and economically 

significant impacts – for positive     changes in Australia and the US, and for negative 

    changes in France, Japan, and the UK. 

For the major net oil-exporting country in our sample (Norway), we see a different result: 

a mid-frequency increase in     actually increases the real output growth rate.  Note that this 

result is consistent with the finding in Jiménez-Rodríguez and Sánchez (2005) that    
  enters a 

model specification like Equation (7) with a significant positive coefficient.  But our result is 

richer (and more nuanced) in that we find that this effect of an increase in     only pertains to oil 
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price growth rate increases with a persistence in the range of more than one year but less than or 

equal to four years.  Additionally, we find that – unlike the net oil importing countries – Norway 

responds to low-persistence decreases, rather than increases, in the oil price growth rate with a 

change in the real output growth rate of the opposite sign.  

Overall, then, our results demonstrate the existence of a strong (and asymmetric) impact 

of oil prices on real output, once one appropriately allows for the differential impact of 

fluctuations in the oil price growth rate with differing levels of persistence.  Controlling for the 

persistence level of oil price fluctuations not only leads to a more statistically adequate 

econometric formulation of the real output versus oil price relationship, but also yields 

interestingly interpretable economic results.   

What are the mechanisms behind our reduced-form results?  Do households and firms 

respond differently to oil price changes of different levels persistence?  And if so, why?  Does 

the central bank react differently as well?   Our results point clearly to a need for a more 

structural theory, leading to a model capable of addressing these new questions.   
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Table 1a: Data Availability 

 Real GDP Growth     Source 
Number of 

Observations  

Australia 1976Q1 – 2007Q4 FRED 126 

Canada 1976Q1 – 2007Q4 FRED 126 

France 1980Q1 – 2007Q4 FRED 109 

Japan 1980Q1 – 2007Q4 FRED 109 

Norway 1978Q1 – 2007Q4 FRED 117 

United Kingdom 1976Q1 – 2007Q4 FRED 126 

United States 1976Q1 – 2007Q4 FRED 126 

 Oil Price Growth     Source  

IMF Spot Oil Price 1976Q1 – 2007Q4 IFS  

 

Table 1b: Summary Statistics on the Oil Price Growth Rate and Its Components 

 

        
     

     
  

Mean 6.200 7.053 -0.194 -0.659 

Median 0.962 5.493 -0.736 -0.073 

Maximum 324.699 46.331 192.916 258.930 

Minimum -295.774 -26.990 -105.768 -168.081 

SD 65.494 15.678 38.265 46.800 

Skewness 0.304 0.257 0.979 0.598 

Kurtosis 10.181 2.369 7.611 11.108 
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Table 2: A Ten-Period Window Example 

 

Period Matrix A Data 

 

 
 
 
 
 
 
 

 
  
  
 
 
   
   
   
   
  

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

                                        
                                             
                                            
                                            
                                            
                                             
                                            
                                            
                                            
                                              

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

      

      

      

      

      

      

      

      

      

       

 
 
 
 
 
 
 
 
 

 

 

Note: The first row of   time the data vector simply yields      times the sample mean of the data in this ten-period window.  As the window moves through 

the data set, this operation extracts any, possibly nonlinear, trend as a moving average.  Rows two and three take a weighted average of the window data, using 

smoothly-varying weights which take a full ten periods to reverse, so any fluctuation in window data that reverses in a couple of periods yields a small value.  

The product of row ten and the window data is essentially calculating five changes in the data which occur during the window period; a long, smooth variation in 

the window data yields a small value for this frequency component.  
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Table 3: Oil Price-Output Regression Allowing Only for Asymmetry  

 Australia Canada France Japan UK US Norway 

Increase in oil price growth 

rate:     
  

-0.005 

(0.083) 

-0.002 

(0.005) 

-0.002 

(0.005) 

-0.014** 

(0.006) 

-0.008 

(0.012) 

-0.009 

(0.006) 

0.018** 

(0.008) 

Decrease in oil price growth 

rate:     
  

0.008 

(0.005) 

-0.004 

(0.016) 

-0.008*** 

(0.002) 

0.016*** 

(0.006) 

0.001 

(0.006) 

0.002 

(0.005) 

-0.004 

(0.008) 

Adjusted    0.000 0.219 0.223 0.037 0.054 0.066 0.079 

Ho:  β+ = β- 

(Symmetry) 

  -value] 

0.293 0.737 0.305 0.001 0.514 0.241 0.091 

Ho:  β+ = β- 

(Symmetry – Joint Test) 

  -value] 

0.000    (0.128, omitting Japan and Norway) 

Ho:  β+ = 0 

(No impact from    
 ) 

  -value] 

0.001    (0.157, omitting Japan and Norway) 

Ho:  β- = 0 

(No impact from    
 ) 

  -value] 

0.000    (0.006 , omitting Japan and Norway) 

Note: The regression model corresponds to Equation (7):                             
       

    .  All variables are in annualized percentage 

changes.    Figures in parentheses are estimated standard errors, using the Stata suest postestimation routine to account for both heteroskedasticity and 

contemporaneous cross-country correlations in the model errors; all hypothesis tests use these standard errors – see Footnote #25.   -values reported here are for 

two-tailed tests throughout.  For brevity, the constant term and the estimated coefficients on the two lags of output growth are not reported.  
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Table 4: Oil Price-Output Regression Allowing for Both Asymmetry and Frequency Dependence  

 Australia Canada France Japan UK US Norway 

Increase in oil price growth rate, 

high-frequency:     
   

 

-0.010 

(0.007) 

-0.019*** 

(0.006) 

-0.009** 

(0.004) 

-0.013* 

(0.008) 

-0.016** 

(0.008) 

-0.019*** 

(0.007) 

0.002 

(0.009) 

Decrease in oil price growth rate, 

high-frequency:     
   

 

0.018 

(0.014) 

0.007 

(0.012) 

-0.003 

(0.004) 

0.020 

(0.014) 

0.003 

(0.010) 

0.012 

(0.009) 

-0.024** 

(0.011) 

Increase in oil price growth rate, 

medium-frequency:      
   

 

0.004 

(0.015) 

0.006 

(0.009) 

0.012 

(0.009) 

-0.011 

(0.025) 

-0.007 

(0.024) 

0.003 

(0.008) 

0.041** 

(0.018) 

Decrease in oil price growth rate, 

medium-frequency:     
   

 

0.001 

(0.016) 

0.007 

(0.012) 

-0.007 

(0.007) 

0.014 

(0.019) 

0.023 

(0.016) 

-0.002 

(0.015) 

0.034 

(0.023) 

Increase in oil price growth rate, 

low-frequency:     
   

 

-0.067** 

(0.028) 

-0.025 

(0.024) 

0.008 

(0.015) 

0.010 

(0.033) 

-0.031 

(0.028) 

-0.059** 

(0.030) 

-0.070 

(0.054) 

Decrease in oil price growth rate, 

low-frequency:     
   

 

-0.004 

(0.046) 

-0.071 

(0.046) 

-0.050** 

(0.029) 

-0.145** 

(0.070) 

-0.096** 

(0.048) 

-0.010 

(0.035) 

0.134 

(0.091) 

Number of observations 126 126 109 109 126 126 117 

Note: The regression model corresponds to Equation (8):                              
           

           
           

           
    

       
      .  All variables are in annualized percentage changes.    Figures in parentheses are estimated standard errors, using the Stata suest postestimation 

routine to account for both heteroskedasticity and contemporaneous cross-country correlations in the model errors; all hypothesis tests use these standard errors – 

see Footnote #25.  P-values reported here are for two-tailed tests throughout.  For brevity, the constant term and the estimated coefficients on the two lags of 

output growth are not reported. 
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Table 5: Additional Hypothesis Tests for Oil Price-Output Regression Allowing for Both Asymmetry and Frequency 

Dependence (p-values) 

 Australia Canada France Japan UK US Norway 

Ho:                                   

(Frequency Independence) 
0.066 0.171 0.215 0.200 0.078 0.077 0.009 

Ho:                                   

(Frequency Independence – Joint Test) 
0.000 

Ho:                  

(Frequency Independence, increases only) 
0.058 0.144 0.199 0.772 0.765 0.061 0.132 

Ho:                   

(Frequency Independence – Joint Test) 
0.028 

Ho:                   

(Frequency Independence, decreases only) 
0.747 0.362 0.278 0.056 0.108 0.644 0.039 

Ho:                  

(Frequency Independence – Joint Test) 
0.015 

Ho:                                 

(Symmetry) 
0.176 0.334 0.244 0.039 0.128 0.076 0.147 

Ho:                                

(Symmetry – Joint Test) 
0.000 

Ho:                    

(No impact from    
       

       
   

) 
0.040 0.008 0.166 0.121 0.045 0.010 0.055 

Ho:                    

(No impact from    
       

       
   
– Joint Test) 

0.000 

Ho:                    

(No impact from    
       

       
   

) 
0.467 0.536 0.001 0.077 0.196 0.534 0.085 

Ho:                    

(No impact from    
       

       
   
– Joint Test) 

0.000 

Note: See the note for Table 4. 
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Figure 1a: Annualized quarterly nominal oil price growth rate     (1952Q2 – 2011Q2)

 

Source: IMF International Financial Statistics database; see Section 2 for details.   

Figure 1b: Annualized quarterly nominal oil price growth rate     (1976Q1 – 2007Q4) 

 

Source: IMF International Financial Statistics database; see Section 2 for details.    
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Figure 2: Frequency (Persistence) Components of Oil Price Growth Rate (     

Low-frequency Component (> 4 Years) 

 

Medium-Frequency Component (≤ 4 Years and > 1 Year) 

 

High-frequency Component (≤ 1 Year) 

 

Note:     is decomposed into three components.  The low-frequency component has a period of 

fluctuations of more than 4 years, the medium-frequency component is equal or less than to four 

years and more than one year, and the high-frequency component is one year or less.  The sum of 

the three components is exactly equal to the original oil price growth rate series plotted in Figure 

1b.  
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Appendix: Modeling in Levels 

Equation (7), as is fairly standard in this literature, specifies the relationship between real output 

and oil prices in terms of their growth rates.  One could instead model the relationship between 

the levels (log-levels, presumably) of these time series.  However, in view of the fact that both of 

these time series are either integrated – i.e., I(1)  – or nearly so, we view modeling this 

relationship in terms of levels unwise. 

 The main point of this paper is that the strength (and even the sign) of the relationship 

between oil prices and real output can (and does) depend on the persistence of the fluctuations in 

oil prices.  And we do in this paper explicitly examine the relationship between the growth rates 

of real output and the oil price at various frequency components, including a component at a 

frequency of zero.  This zero-frequency component amounts to a moving average of recent 

values of the growth rates in the oil price; this component captures any slow, smooth changes in 

the mean growth rate of oil prices.  In addition, we explicitly examine whether there is 

cointegration between the log-level series, and find that there is not.  Had evidence for such 

cointegration materialized, however, the most appropriate response would have been to have 

included an error-correction term in the growth rate equation, consisting of the fitting errors from 

a levels model between these two series.  The coefficient on that error-correction term – had it 

existed – would then have quantified something different from the zero-frequency coefficient on 

the growth rate in oil prices: it would have quantified the degree to which the current growth rate 

in real output depends on how far real output is ‘out of kilter’ with its long-run relationship with 

the price of oil, rather than quantifying the degree to which the current growth rate in real output 

depends on recent (but fairly smooth) fluctuations in the price of oil.  In the event, however, such 

an error-correction term was not necessary, but it is important to understand the meaning which 

its coefficient would have had.
29

 

 In principle, one could instead model the relationship between real output and the oil 

price in levels directly, instead of using a level model only in order to find/estimate a potential 

                                                            
29 As shown in Ashley and Patterson (2010) the fractional integration alternative – ‘first-differencing’ both real 

output and the oil price to a fractional exponent – removes any slow, smooth variation in the means of both time 

series prior to the analysis.  This alternative is unattractive because – in common with any high-pass bandpass 

filter – it simply eliminates the low frequency variation in both time series.  It also has the disadvantage of leaving 

the modeling in terms of variables (fractionally differenced time series) which are difficult to interpret economically. 
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cointegrating vector.  Of course, one would first remove any linear trend from each time series, 

as regressing trended time series on one another is a well-known source of spurious regressions.  

That de-trending inherently makes both series at least appear to be mean-reverting over the 

sample period.
30

  Estimates of the coefficients in the level model (e.g., for the cointegrating 

vector) are known to be consistent, which implies that the estimators converge in probability to 

population values for arbitrarily long samples.  But our actual sample – while perhaps in the 

hundreds – is not at all ‘arbitrarily large.’   

 Indeed, there are compelling intuitive reasons for thinking that even quite large samples 

are substantially smaller than one might think when the data are highly persistent.  For example, 

let       denote the deviations of, say,   observations on some highly-persistent – albeit perhaps 

I(0) – time series from its trend.  Because of its high persistence, a time plot of      loops around 

its (sample) mean value of zero only a handful of times over the course of the sample.  Let j 

denote the number of such loops.  Effectively, then, most of the sample information on      can 

be summarized by 2j numbers: the value of       on each maximal excursion and the time at 

which each such excursion occurs.  But the value of j is likely to be far, far smaller than  .  Thus, 

if both real output and the oil price are highly persistent, then our levels-model regression 

equations effectively are based on j observations rather than on   observations.  They are still 

consistent, because j become arbitrarily large as   grows unboundedly.  But one can expect poor 

results from such regressions in levels, even though   is quite large.
31

 

 

                                                            
30 An I(1) time series is not actually mean-reverting, but its deviations from an estimated linear trend will necessarily 

appear to be so over the sample period used in estimating the trend.  A highly persistent I(0) time series is in fact 

mean-reverting over all sample periods and will thus appear to be so over any sufficiently lengthy sample period, 

including the one used in estimating the trend. 
31 Ashley (2012, Chapter 14) takes up this topic in much greater detail.  In particular, it examines the issues involved 

in obtaining meaningful standard error estimates for regression coefficients estimated using highly persistent data.    


