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Abstract

The model selection and Granger-causality literatures have focused on insample rather
than postsample hypothesis testing. This is because postsample model validation periods
are usually short, whereas the correlations in typical postsample forecast errors require
large-sample methods. A resampling-based postsample inference procedure is described
which explicitly estimates the uncertainty which its large-sample approximation induces
in the inference significance levels it produces. The procedure is applied to postsample
forecasting errors from the Ashley et al {1980) study examining Granger-causation
between US consumption and advertising expenditures, Postsample model validation is
apparently feasible, but ‘requires longer postsample periods than past studies have
allocated. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper describes a new inference technique for assessing whether one
sequence of postsample forecasting errors is smaller than another. Such inferen-
ces are particularly useful where substantial specification search activity has
reduced the usefulness of insample procedures for model selection and/or
validation.
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Postsample forecast error series are typically strongly crosscorrelated and
often significantly serially correlated as well. Under these conditions existing
postsample inference techniques (such as Ashley et al., 1980; Ashley, 1981; Meese
and Rogoff, 1988; Diebold and Mariano, 1995) are only valid for large samples.
This is awkward since postsample model validation periods are usually short.

The postsample inference technique proposed here is a varation on the
bootstrap designed to mitigate this awkwardness by producing an explicit
estimate of the uncertainty which its own large-sample approximation induces
in the inference significance levels. In addition to accounting for any cross-
correlation or serial correlation in the two forecast error series being compared,
this new technique also conveniently allows consideration of a variety of
forecast error loss functions and provides an estimate of how much stronger the
evidence would need to be or how much longer a postsample model validation
period is necessary in order to obtain a given level of inferential precision.

The nature and advantages of bootstrap-based inference are briefly reviewed
in the first portion of Section 2 in the context of a very simple problem: inference
on the population mean of an iid. random variate. The remainder of Section
2 describes the variation on the bootstrap introduced here. In Section 3 this new
approach is extended to produce inferences on ratios of expected functions of
pairs of correlated and/or serially dependent time series. The usefulness of the
procedure in small-sample settings is demonstrated in Section 4 using Monte
Carlo simulations.

In Section 5 the new technique is applied to the postsample forecast error
series generated in the Ashley et al. (1980) study of the Granger-causal relation
between aggregate US consumption expenditures and aggregate US advertising
expenditures. This example illustrates the new procedure’s ability to provide
useful Granger-causation inferences in a small-sample setting under alternative
loss functions on forecast errors (such as the absolute error loss function or an
asymmetric piecewise-quadratic loss function) and its ability to generate inferen-
ces using the scaled mean loss differential statistic introduced in Diebold and
Mariano (1995).

The results from this example indicate that a postsample model validation
period substantially longer than the 5-20 periods typically reserved in past
studies is necessary in order to conclude that a 20-30% MSE reduction is
significant at the 5% level. This issue is discussed in the final section of the paper.

2. Enhancing the usefulness of bootstrap inference in small-sample settings

In this section bootstrap-based inference is briefly described in a simple
setting in order to clarify its nature and to show how a second level of
bootstrapping can be used to quantify the small-sample uncertainty induced in
the inferences by the bootstrap approximation itsell.
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Consider the problem of using a random sample of N observations on
a variable x to test whether its population mean () is less than some given value,
to. Non-bootstrap inference typically begins by choosing among candidate
estimators for the unknown parameter based on their sampling properties. In
this case the sample mean, %, is the obvious choice. Since X is known to be
asymptotically Gaussian, most analysts would routinely assume that the distri-
bution of x is sufficiently close to being Gaussian that this asymptotic distribu-
tion provides a reasonable approximation to the finite-sample distribution of x.
Asymptotically valid confidence intervals for g and hypothesis tests concerning
g are then derived on the assumption that the sampling distribution of x is
Gaussian.

In the bootstrap approach, the population distribution of x is approximated
by its empirical distribution, which places equal probability mass on each of the
N observed values for x. Singh (1980), Bickel and Freedman (1981), Beran {1986)
and others have shown that this approximation is inconsequential in large
samples. Under it, as much additional data as is needed can be generated by
sampling at random out of the empirical distribution of the observed sample.’
Thus, the probability that it < u, can be estimated by generating, say, 2000 new
N-samples on x and computing the proportion of the resulting 2000 realizations
of % for which x < .

Both approaches are only asymptotically justified, but the bootstrap has three
advantages. First, the bootstrap is often easier to apply than alternative
methods, although it does require substantially larger amounts of computa-
tional resources. Second, inferences and parameter estimates obtained using the
bootstrap are often mote accurate in small samples — in some cases {(e.g.,
Freedman and Peters, 1984) dramatically so. Finally, the bootstrap approach
can in principle be used to quantify the sensitivity of its own inference results to
the errors induced by the bootstrap approximation itself,

This last advantage of bootstrap-based inference is the most relevant feature
for the present purpose. Instead of generating 2000 new N-samples and comput-
ing the proportion of them for which X < ug, consider generating a smaller
number of N-samples (100, say) and proceeding with each one as if it were the
original sample. That is, for each one of these 100 ‘starting samples’, 2000 new
N-samples are generated and the proportion of the resulting 2000 realizations of
% for which X < p, is computed. In this way, each of the 100 starting samples
yields an inference on y in the form of a probability estimate. The dispersion of
these 100 inference probabilities provides an estimate of the uncertainty in the

'More explicitly, if the original sample is denoted x(1), ..., x(N), a new N-sample can be obtained
by drawing N integers {j, ... jy} at random from the discrete uniform distribution which places
equal weight on each integer in [1, N]. The resulting new N-sample is x{ ) ... x{jn).
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bootstrap inference due to the finite size of N; it can be taken as estimate of the
‘fragility’ of the inference, in the spirit of Leamer (1985).

Since the distribution of these inference probabilities necessarily becomes very
non-Gaussian when the average inference probability becomes small, the me-
dian and interquartile range of the 100 inference probabilities provide more
useful measures of the location and dispersion of this distribution than do the
mean and standard deviation. Consequently, inference results are reported
below in terms of the median inference (Qy sq) and its empirical 50% confidence
interval, [ Q¢ 25, Qo.75]. Here @, is the a% fractile of the 100 inference probabilit-
ies, so the length of this interval is just the sample interquartile range.

This uncertainty estimate based on the interquartile range of the 100 prob-
ability estimates is itself only asymptotically justified, but it nevertheless conveys
considerable information about the reliability of the median bootstrap inference.
Alternative checks on the reliability of the median inference (and its dispersion)
can be obtained at varying cost. For example, it is easy to verify whether or not
100 starting samples and 2000 bootstrap repetitions suffice to make the median
inference insensitive to changes in the starting seed for the random number
generator. Another inexpensive check is to compare the median inference
probability to the inference one obtains from the ordinary bootstrap, in which
2000 new samples are drawn from the empirical distribution of the observed
sample data. Finally, at tremendously larger cost, Monte Carlo simulations can
be used to estimate the coverage of the empirical 50% interval on the inferences;
the results of such calculations are reported in Section 4 below.

However, there are three reasons why this simple approach to verifying the
small-sample reliability of bootstrap-based inferences is almost never imple-
mented. {Freedman and Peters (1984) provide a rare exception.] First of all, the
additional computational burden involved is obviously substantial — in the
example above, estimating an empirical 50% confidence interval for the boot-
strap inference requires 100 times as many bootstrap replications. Secondly,
theoretical work on bootstrap inference (e.g., DiCiccio and Romano, 1988) has
focused on improving the accuracy of bootstrap inference rather than on
quantifying the degree to which it remains uncertain. Thus, while several
second-level (‘double’}) bootstrapping proposals have been advanced - eg.,
Beran (1987) — the second level of bootstrapping in these proposals is used to
improve the small-sample accuracy of the first level inference rather than to
quantify its small-sample uncertainty.

Lastly, the straightforward dispersion calculation described above turns out
to be subtly flawed in such a way as to substantially overstate the actual
small-sample dispersion in the bootstrap inferences. Consequently, the initial
results obtained in trying out an idea of this sort are apt to be so poor as to
discourage further interest in the approach. The flaw in the straightforward
dispersion calculation is fundamental, but simple and easily avoided once
recognized. '
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Ordinarily, the distinction between the sampling distribution of an estimator
(such as %) and the distribution of its sampling errors (X — y) is inconsequential
since these two distributions differ only by a translation in the fixed amount p.
Thus, under the null hypothesis that 4 = uo, the probability that £ < 6, say, is
identical to the probability that the sampling error X —pg < 6 —up. But this
distinction is not inconsequential in the present context.

In the preceding example, 100 starting samples are picked from the empirical
distribution of the original data and then 2000 new N-samples are picked from
the empirical distribution of each starting sample. Thus, a total of 200,000
N-samples are drawn; and each one is used to compute a value for x. Notice,
however, that these 200,000 N-samples are not all drawn from the same distribu-
tion. The first 2000 N-samples are all drawn from the empirical distribution of
the first of the 100 starting samples. Letting 1, denote the population mean of
the distribution from which these N-samples are drawn, note that x; must
precisely equal X; (the sample mean of the first starting sample) since the
empirical distribution gives equal weight to each of the N observations in the
first starting sample. The second group of 2000 N-samples is drawn from the
empirical distribution of the second of the 100 starting samples, with population
gz (which is equal to X3} and so forth. Clearly, these 100 population means
(i1 ... p1po) will vary substantially for small N, inducing substantial additional
dispersion in the resulting 100 inferences. This additional dispersion is ex-
traneous since it is not due to the bootstrap approximation of using the
empirical distribution of the original sample data to replace the population
distribution from which the original N-sample was drawn. Indeed, this source of
inferential dispersion would be equally strong even if each of the 100 starting
samples was drawn, Monte-Carlo fashion, from the actual population distribu-
tion of x.

This problem does not aritse when the bootstrap approximation is used to
generate 100 estimates of the sampling error distribution of %, since all of these
distributions have mean zero, Letting X, denote the sample mean of the actual
sample data, then Hy: g < pq implies that x, — g, the sampling error implied by
Xo, exceeds Xy — po. Consequently, the ith starting sample can be used to
estimate the probability that p < pp by computing the fraction of the 2000
N-samples for which the sampling error X; — u; = X; — X1 exceeds Xo — po.,
where %;; is the sample mean of the jth N-sample drawn from the ith starting
sample and x; is the sample mean of the ith starting sample. Thus, the fraction of
the 2000 sampling errors which exceed X, — po is the inference probability on
i from the ith of the 100 starting samples. These 100 inference probabilities are
much more stable across the starting samples than those obtained from the 100
sampling distributions of % itself, simply because the distribution of the sampling
errors (X;; — ;) is much more stable across the starting samples than is the
distribution of %;;. In fact — presuming that the number of N-samples drawn
from each starting sample is sufficiently Jarge — the distribution of these
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sampling errors varies across the starting samples only because the empirical
distribution implied by each starting sample is derived from an N-sample
bootstrapped from the original sample data rather than from the original
sample data itsell Thus, the dispersion across the starting samples of the
inferences based on the sampling error distributions quantifies the uncertainty
in the inferences caused by the bootstrap assumption itself 2

In summary, the median of the inference probabilities obtained from these
bootstrapped sampling error distributions provides an estimate of the probabil-
ity that ¢ < pg. And the dispersion of these inference probabilities across the
starting samples quantifies the small-sample uncertainty in the median inference
due to the bootstrap approximation of replacing the population distribution of
x by its observed empirical distribution. In this way — by explicitly estimating
the small-sample uncertainty in the bootstrap inference — it becomes feasible to
obtain potentially convincing inferences {from the bootstrap in a small-sample
setiing,

3. Inference on postsample forecast errors

The bootstrap-based inference approach described above is applied here to
the problem of testing whether the expected size of the postsample forecasting
errors from one model significantly exceeds that of another, based on an
observed sequence of N postsample forecasting errors from each model.

These two postsample forecasting error series are denoted x, and y, below.
Since postsample forecast errors are typically autocorrelated, it is not appropri-
ate to sample directly from their empirical distribution, Instead, it is assumed
here that (x,, y,) is covariance stationary and that its generating mechanism can
be adequately represented as a bivariate VAR process:

X B B X - g
@(B)[ r:| _ |:¢11( ) @1al )il[y:} _ [ﬂ:l + |::] )
Ve ¢’21(B) ¢22(B) 1 Iy Mt
so that new N-samples {(xy, y1) ... (xy, yn)} can be obtained by sampling from
the empirical distribution of the innovations, (g, #1) ... (&x. #x).
The assumptions underlying Eq. (1) can and should be checked. Stationarity

in mean and variance can be checked by examining time plots of x, and y,
looking for outliers and for evidence of substantial shifts or trends in mean or

l"i'he.empirical distribution of the original sample data is not identical to the population
distribution from which the original sample was drawn, however. Consequently, this dispersion
estimate is itself valid only for large samples. This issue i3 examined using Mente Carlo simulations
in Section 4 below.
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variance. And the linearity assumption inherent in Eq. (1) can be checked by
examining scatterplots of x; and y, 4, for k=0, £ 1, + 2, etc. Since Gaussianity
is not assumed, an outlier which is not overly influential can be tolerated; such
an observation can be viewed as an ordinary realization from a non-Gaussian
{x,, ¥, distribution. However, formal testing is beside the point in this context: if
N were large enough for such testing to be justified, available large-sample
methods would suffice for obtaining the relevant postsample inference in the
first place. .

Note that x, and y, are the postsample forecasting error series produced by
two different models whose relative forecasting effectiveness is being evaluated.
The VAR model given above as Eq. (1) is neither of these models; it is merely
a descriptive parameterization of the serial correlation structure of the forecast
errors (x, and y,) made by these two models. Thus, covariance stationarity of the
{x,, y.) implies that the forecast horizon must be the same for all of the x, — e.g.,
they are all h,-step-ahead forecasts; similarly, all of the y, must be h,-step-ahead
forecasts. But h, need not equal h,. Indeed, it is not necessary to observe or know
anything further about the two forecasting models that generated the forecasting
error series, x; and y,. These two models might be nested or they might not; they
might be equally complex constructs arising from differing schools of thought,
or one of them might be quite naive compared to the other. Since all that is used
from each of the two models is a sequence of postsample forecasting errors, the
internal structure of these two models is irrelevant.

The coefficients in the distributed lag polynomials {¢,(B), ¢12(B), ¢2:(B),
and ¢,,(B)}, the intercepts (i, f,), and the distribution of (¢, .} in Eq. (1) need
not be supplied - the only specification information required is a reasonably
tight upper bound on the maximum lag in each of the four lag polynomials.?
Usably accurate upper bounds on these lag polynomial orders can be obtained
by running a few linear regressions and eliminating the clearly insignificant
terms. This suffices because the inference results are insensitive to minor
overelaboration in the specification of these upper bounds; Monte Carlo simula-
tion results illustrating this point are given in Section 4.

Fig. 1 provides a schematic description of the calcuiation of the probability
that a specified relative accuracy criterion, r, is less than or equal to some given
value, 7, most commonly, T will equal one. The population value for r could be

3In ordinary YAR modeling, these orders are chosen to be sufficiently large that the innovation
series (g, ,) is serially uncorrelated. Since the bootstrap makes independent picks from the observed
(in general, non-Gaussian) innovation sequence, it must be assumed here that these orders are
sufficiently large that {g,, #,} is serially independent. However, this distinction is refevant if and only if
(x,, ¥,) is related to its own past in a substantially nonlinear way, postsample forecasting periods are
ordinarily so short that any consideration of serial dependencies more complex than the low-order
VAR mechanism used here is out of the question in any case.
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the ratio of the two MSEs:

Fvse = @ = E(x,i)
MSE, E(y)
but other choices for r are possible and often preferable. For example, if the
distribution of (s, »,) is fat-tailed, then
. _MAE, _ E(x)
MAE, E¢yd)

might be preferable; or, if negative errors are known to cause substantially
higher losses, it would be preferable to use an asymmetric criterion, such as

Bl
= E(s (v vy

where s(z) = 1 for z =0 and 5(z) = 2, say, for z <0. Alternatively, the superiority
of the y, forecast error series over the x, error series can be quantified using the
studentized expected loss differential criterion proposed by Diebold and
Mariano {1995).

 (Blloss(x) loss(y,)]}
r"M_exp{ NN

where f;(0} is the spectral density of the numerator at frequency zero. Loss (-) is
a situationally appropriate loss function; the absolute value function is used in
the calculations reported below in Section 5. Here rpy, is defined as the exponen-
tial of Diebold and Mariano’s criterion so that r equals one for equivalent
forecasts on all four criteria.*

Returning to Fig. 1, r is the population value of whichever forecast accuracy
criterion has been selected. The object is to test the null hypothesis Hy: r < ¢
against the alternative hypothesis H,: r >1, based on the observed N-sample:
{(x1, ¥1) ... (xm, ya)}. As Fig. | indicates, this original sample data is only used
twice,

First, it is used to obtain #,,;,, a consistent sample estimate of r; using rysg, for
example, Fqyig is the ratio of the sample mean of (x,)* to the sample mean of (y,)°.
The resulting 7,.,/t figure is the sampling error factor this sample estimate
represents if » equals 1, so that Hy is barely true. Comparing the observed

*Space limitations preclude an extensive discussion of their criterion here. They provide a consis-
tent estimator of \/ITilog(rDM) which is very easy to compute and is asymptotically distributed
N(0,1) when the population loss differential is zero and the loss differential series (loss{x,} —
loss{y,}) is serially uncorrelated beyond a given lag.
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sampling error factor, F,.,/7, to the distribution of sampling error factors,
Fobserved /Tirues Tather than comparing the observed sampling error itself, o — 1,
to the distribution of sampling errors, ropservea — Furue, Makes the inference results
independent of which error series is chosen to appear in the numerator of r — i.e.
it ensures that Prob{r < ¢} precisely equals Prob{r™' > t7'}.

Second, the original sample data is used to obtain OLS estimates of the
parameters in the VAR model, Eq. (1). Since corr(g, 1,) can be substantial, SUR
would be preferable in principle, but N is not ordinarily large enough to justify
its use. It is useful to correct the OLS parameter estimates for small-sample bias;
Monte Carlo simulation results illustrating this point (and a description of the
bias correction algorithm itself) are given in Section 4. At this point the original
sample data has yielded (1) an observed sampling error factor (assuming that
r just equals 7) and (2) an estimated data generating mechanism — the fitted VAR
model and its residuals, {(&;, f,) ... (& fin}

Next, this estimated VAR model is used to generate new observations on
(x, y,) using the bootstrap assumption that the population distribution from
which the innovation 2-vectors{e;, #1) ... (en, n7w}} were drawn is identical to the
empirical distribution of the fitting errors {(8;, #1)... (8, Ain)}, Which places
probability mass 1/N on each of these observed 2-vectors.” If the maximum lag
in the VAR is p, then the next observation on (x,, y,) follows directly from the
previous p values of (x,, y,), the VAR model coefficient estimates and the next
innovation 2-vector, (8, #;), where j is-a randomly chosen integer in the interval
[1, N]. The p values of (x,, y,) needed to initiate the simulations can be sample
values or even zeroes — after a sequence of 50-100 observations have been
generated in this way (and discarded) their influence becomes negligible. In this
way, the algorithm generates a number of new N-samples on (x,, y;). Since these
N-samples are generated from the model estimated using the original sample
data, they are analogous to the 100 ‘starting samples’ discussed in Section 2; the
number of these starting samples generated is denoted ‘Ny,,' below.

Each of these N, starting samples is then used to obtain an estimate of the
distribution of sampling error factors, fupservea/Tirues Vid a large number of new
samples generated using the bootstrap approximation. The number of new
samples generated is denoted N, in Fig. 1 and generally set equal to 2000 in the
calculations reported below.®

SBootstrapping from the residuals of an estimated autoregressive time series model is not new
— Efron and Tibshirani (1983, p. 27) do this for a one-dimensional AR(1) model as one of their first
applications of the bootstrap. Picking from the empirical distribution of 2-vectors asymptotically
preserves the contemporaneous crosscorrelation structure of the original innovations.

5Thus, to fix the notation, there are N, = 2000 bootstrap ‘repetitions’ for each of Ny, = 100
‘simulations’ and each simulation is initiated by using one of the Ny, starting samples generated
from the original sample data. In practice, N,., and N, are to be increased to the point where the
results are no longer appreciably sensitive to their values.
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A
Obtain t. . »sample {orig’® = Sampling error
l— ong ¢ P org* factor this observation
estimate of r represents ifr=1
Original
sample data
I . Use the estimated VAR madal
Estimate to generate
VAR madel Ngim = 100 starting samples
37th starting aample
used to [nitiate
| 7th simulation)
Use this VAR model to Estimate VAR modal Calculate population r

generate
Nrgp = 2000 samples

using
37th Starting sample

based on this

true
VAR medei»r ps

R

#1017th

Obtain Fygp > sample
estimate of r using

Obtain samFiing error
Tom
1017th of these N,gp samples.

factor
1017th reptition = fyg, ,/r°

The inference from simulation #37 (l.e. Pa7) Is then the fraction of the Nrep sampling
efror factors obtained in simulation #37 which are greater than or equal to

the sampling error factor which the original sample observation represents ifr= 1, Or:

f1 ] fin Tod
_ , . rop| ofig
pgy = Fraction of ”r—tm] --[—r tme] } 2 -

37 37

Fig. 1. Calculation of py,, the 37th estimate of probability that r < 7.

Fig. 1 describes how {{f;/r5%%), j =1 ... N}, the distribution of sampling
error factors obtained applying the bootstrap to the 37th starting sample, is
obtained. First, a VAR model is estimated by applying OLS to the 37th starting
sample. As with the estimated VAR model for the original sample data, the
resulting parameter estimates are corrected for small-sample bias using the
algorithm described in Section 4. Then this estimated model is used as a data
generating mechanism to generate:

(a) Ny, N-samples {(xy, y1) ... (xn, yn)} which yield N, sample estimates of r,
?'1, e ’?Nsim: and
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(b) a single, large sample of length 100N {(x;, y1) ... (X100m, Y100n)}, Which
yields a large-sample estimate of r, ¥§3°. This large sample ratio (r§2°) is essential-
ly equal to the population value of r for this 37th VAR process.” Presuming that
N,y is sufficiently large that the observed distribution of the N, values of
(F;/r§5°) adequately characterizes the sampling error factor distribution implied
by this 37th data generating mechanism, the 37th estimate of the probability
that r < 7 (i.e, f37) is the fraction of the N,., sampling error factors that exceed
Porig/":'

The other N, — 1 sampling error factor distributions are obtained in a sim-
ilar fashion. These distributions are unequal to one another for two reasons:
First, each starting N-sample is too small to precisely recover the single set of
VAR coefficients (obtained using the original sample data) used to generate all
Ngm starting samples. This imprecision is presumably similar to that with which
the true (population) VAR coefficients can be recovered from the single observed
sample. And second, even if the true VAR coefficients could be used in generat-
ing all of the N, starting samples, the empirical distribution of the residuals
implied by each of the starting samples is different for each starting sample
because each one is only a bootstrap approximation to the population distribu-
tion from which they were all picked.® Thus, the dispersion in the inference
probabilities obtained from these Ny, sampling error factor distributions —i.e.,
the dispersion in p; ... Pygm — quantifies the inferential uncertainty caused by
sampling errors in the estimation of the VAR model and by the bootstrap
approximation itself.

4. Mante Carle simulation resulis

The empirical 50% confidence interval, [Qg.25, Qo.75], is defined above in
Section 2. By definition it contains the middle half of the N, inference
probabilities (f; ... fngm) described in Section 3. In this section, Monte Carlo
simulations are used to estimate the actual coverage of this 50% inference
interval. The sensitivity of this coverage to sample size, mis-specification of the
VAR model, and hias correction in the VAR coeflicient estimates is examined.

Each Monte Carlo simulation is conducted as follows: First, N innovation
vectors, {(&, #,), t = 1 ... N} are generated from a truncated bivariate Gaussian

"The r{f¢ ... rif%  are analogous to the 100 population means (g, ... p;00) of Section 2. For r =
ruse the population MSE ratio for the data generating mechanism derived from the 37th starting
sample (ri%°) can be obtained analytically. This is not feasible for the other criterion choices, so
ri4® is obtained by merely simulating a very large sample from the data generating mechanism.

8This population distribution is just the empirical distribution of the residuals from the VAR
model obtained using the original sample data.
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distribution. Two truncation points are considered here: + 30, corresponding
to an essentially Gaussian distribution, and + 0.5¢, corresponding to a nearly
uniform distribution. In view of the large contemporaneous crosscorrelations
typically found among postsample forecasting errors obtained from different
models, the innovations in the VAR model for these errors are generated with

corr (g, m,) equal to 0.60. N-samples {(x,, y1) ... (xn, yn)} are gencrated from the
model

x, =05x_, +¢,

(2)
Ve=05ye1 4t

witht=1.. N.

Since the VAR model is symmetric in its treatment of x, and y,, the population
values of rygg and ry,g are both one. A large number of such N-samples are used
to estimate the p = 0.05 and p = 0.01 critical points, 77°%(N) and t3(N), defined
by :

Prob| &r—— =4 (N)|=p

and

N
Prob Z'Nzl—lxtk =1 (N)|=p
=1y

for N = 5,10, 20, and 40 and using both truncation points, Thus, for example, in
40,000 samples of length 20 simulated with truncation at + 3¢, the sample MSE
ratio exceeds 1.48 only about 400 times; thus z;*%(20) is 1.48 for p = 0.01 with
this truncation point.

For each sample size and truncation point, 200 N-samples vielding MSE
ratios in the interval [0.99, 1.01] are generated; N-samples yielding MSE ratios
outside this interval are rejected. Setting N, = 100 and N,,,, = 2000, each of
these 200 samples is then used as the sample data for the inference algorithm to
obtain Ny, estimates of the probability that rp,. > 75 (N}, first for p = 0.05 and
then for p = 0.01. The largest and smallest of the middle 50 of these inference
probabilities are the endpoints of the empirical 50% inference interval for each
of the 200 Monte Carlo simulations. Since the true probability that ry, >
To°%(N) is p, the estimated coverage of this 50% interval is the fraction of these
200 50% inference intervals which contain p.

This process is then repeated, this time retaining only those N-samples whose
sample MAE ratio is in [0.99, 1.01] and computing the coverage of the 50%
inference interval for the test that rp,. > 75°°(N). The coverage results are not
sensitive to minor changes in the sample MSE or MAE intervals for which



R. Ashley | Journal of Economic Dynamics and Control 22 (1998) 647-6635 659

Table 1
Coverage of 50% interval with 200 Monte Carlo trials; Gaussian data truncated at +ke

N=5 N=10 N=120 N=40

1 Test p=005|p=001|p=005]p=001]|p=005|p=001|p=005 |p=0.01

3o |MSE | 0.085 0.145 0.410 0.405 0455 0.460 0.493 0.500

Jo |MAE | 0100 0.110 0.320 0315 0.445 0.445 0.500 0.495

0.5¢ | MSE | 0.100 0.125 0.480 0.445 0.525 0.495 0.550 0.555

0.50 |[MAE | 0.110 0.085 0.430 0.375 0475 0.475 0.540 0.500

starting samples are retained, but the coverage of the empirical 50% inference
interval for the MSE ratio test is sensitive to whether the starting samples were
conditioned on the observed MSE ratic or on the observed MAE ratio, and
similarly for the MAE ratio test. This conditioning is necessary because the
algorithm is bootstrapping the distribution of the sampling error factors
(7;/r35¢, in the notation of Fig. 1) rather than the distribution of sample ratio
itself, r;. Indeed, when the algorithm is modified to bootstrap the distribution of
the sample ratio itself rather than the distribution of its sampling error ratio, the
coverage of the resulting (much wider) empirical 50% inference intervals is
correct if and only if this conditioning is dropped.

Table | summarizes the coverage estimate results for the 1% and 5% tests on
MSE and MAE ratios. These estimates are approximately normally distributed
around 0.50 with a standard deviation of {0.5(1-0.5)/200}0.5 with 200 Monte
Carlo trials, so values in the interval [0.43, 0.57] are insignificantly different
from 0.50. Evidently, N = 20 is sufficient for both distributions and truncation
points, but N = 10 is not.®

Aside from the original sample data, the user need only specify the orders of
the lag structures in the VAR model of Eq. (1). The consequences for the
coverage of the 50% inference interval of mistakenly choosing too large or too
small an order are examined in the Monte Carlo simulations reported in Tabie
2. The ‘overelaborate’ Tows of Table 2 correspond to incorrectly including
y:-.z in the equation for y,; the ‘underelaborate’ rows correspond to incorrectly
omitting the y,_; term from this equation. The true data-generating mechanism,
Eq. (2), is of course unchanged. As might be expected, this modest amount of

Similar results are obtained for p = 0.10 and p = 0.20. It scems likely that the coverage at N = 10
would be better for data which is more weakly autocorrelated.
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Table 2
Coverage of 50% interval with 200 Monte Carlo trials: Gaussian data truncated at 43¢
MGSE ratio test MAE ratio test
N=20 N =40 N=20 N=40

p=0051p=001|p=005|p=001|p=005|p=001|p=005|p=001

Correct 0455 0.460 0.495 0500 0.445 0.445 0.500 (3.495
specification

Over-claborate (0465  [0.440 0.495 0.485 0.415 0.385 0.535 0.545
VAR

Under-elaborate |0.240  [0.220 0315 0.300 0.245 0.220 0.275 0.245
VAR

Without bias 0.340 0315 0.355 0.370 0.245 (.230 0.3%0 0.380
correction

overelaboration is fairly inconsequential, whereas underelaboration results in
significant coverage distortions.*°

Finally, a bivariate VAR model is estimated using the sample data each time
this inference procedure is applied. This model is used to generate Ny, starting
samples, so a total of 1 + N, bivariate VAR models are estimated. The
simulation results reported in the last row of each section of Table 2 demon-
strate that, if left untreated, small-sample bias in the OLS parameter estimates
for these models yields substantial distortions in the resulting inference intervals.
As implemented here, the bias correction procedure is a two-step process. First,
the bias in each coefficient estimator is estimated by using the model estimated
using OLS to generate 100 new samples, estimating a model for each, and
computing the average discrepancy in the slope estimates, The resulting bias
estimates are then added onto the original OLS estimates, the intercepts are
adjusted to force the sample mean of the fitting errors to zero, and 100 more
samples are generated, yielding an improved estimate of the biases.

Overall, the Monte Carlo simulation results indicate that the inference pro-
cedure works quite well for N = 20. It might be possible to use the procedure
with even smaller sample sizes by tuning the bias correction procedure, but this
has not been established.

*The pair of ‘overelaborate’ results with N = 20 on the MAE ratio test for which the coverage
appears to deviate significantly from 0.50 are entirely consistent with chance given the number of
cells in the ‘correct’ and ‘overelaborate’ rows of Table 2.
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5. An illustrative example: Testing for Granger-cansation between advertising
and aggregate consumption spending

Ashley et al. (1980) addresses two related questions. The first is a substantive
empirical issue: do fluctuations in aggregate advertising expenditures Granger-
cause fluctuations in aggregate consumption spending or does the causal rela-
tionship run in the other direction?'! AGS describe the creation of a new
aggregate advertising expenditures time series which can be brought to bear on
this question. The second question is methodological: how can hypotheses
about Granger causation between a pair of time series be tested most effectively?
Here AGS break new ground by proposing a test of the Granger-causation
between two time series based on an explicit comparison of the postsample
forecasting effectiveness of models for each series based on nested information
sets.'?

In particular, suppose that the postsample forecasts of aggregate consump-
tion spending generated by a forecasting model making optimal use of an
information set including information on past aggregate advertising expendi-
tures are demonstrably superior to those of an optimal model based on an
otherwise-identical information set excluding past aggregate advertising expen-
ditures. Then, so long as these information sets are sufficiently wide as to include
any third variable which affects both consumption and advertising, AGS would
conclude that aggregate advertising expenditures Granger-cause aggregate con-
sumption spending. Thus, they reduce the analysis of Granger-causation to an
assessment of whether one model for consumption spending provides better
postsample forecasts than the other.

In fact, AGS find no evidence that aggregate advertising expenditures
Granger-cause aggregate consumption spending. They do, however, find that
including past aggregate consumption spending in the information set for
constructing a model to forecast aggregate advertising expenditures is quite
helpful, reducing the postsample mean square forecasting error by 26% over the
20 period postsample period, 19701 to 1975IV. AGS propose a procedure for
testing whether this MSE reduction is statistically significant but, as with
virtually all postsample inference methods, their procedure is only valid in large
samples. Consequently, with such a short postsample forecasting period, uncer-
tainty as to the small-sample adequacy of their test substantially diminishes the
additional credibility gained from assessing the relative forecasting effectiveness
of the models over a postsampie period.

10r in both directions, yielding a feedback relationship.

12Note that ‘nested information sets’ can and often do lead to non-nested forecasting models.
Indeed, that is the case for the two AGS models (AC.2 and A.1) whose postsample forecasting errors
are analyzed below.
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Applying the inference procedure described in Section 3, let y, denote the
one-step-ahead postsample forecast errors from the model for advertising ex-
penditures based on the wider information set {(including past values of aggreg-
ate consumption spending); this is the ARMAX model denoted AC.2 (AGS,
p. 1161); and let x, denote the postsample forecast errors made by model A.1
(AGS, p. 1159), which excludes past consumption spending from its information
set. Then p = Prob{r < 1} is the significance level at which the null hypothesis
that consumption spending Granger-causes advertising can be rejected.
Depending on one’s loss function with respect to forecast errors, r might be any
one of the relative accuracy criteria given in Section 3: rygg O ryag OF Fasy O
r'pM-

Time plots of x, and y, both look reasonably covariance stationary. In
particular, neither series appears to be trended in either mean or variance. Both
series appear to be serially correlated, however. OLS regression yields:

738 —0032x,_, —0452x,_,;+ ¢, R* =10.134,

1) 1) (1.52) DW =192,

776 +0032y,_, —0428y_,+n, R>=0193
Sy 1 (153) DW = 161,

where the figures in parentheses are estimated t-ratios and both fitting error
series appear to be serially uncorrelated. Formal hypothesis testing using these
estimated ¢ ratios is surely not justified with such small samples, but they still

Table 3
Inference results using postsample forecast errors from AGS (1980) models for aggregate advertising
expenditures

TMsE TMAE Fasy DM
Sample r ratio 0.738 0.934 0.803 0.877
Asymptotic test
significance level 0.092 Unknown Unknown 0.278
Bootstrap inference results:
Median of N,
mferences (Qo.50) 0.237 0.388 0.319 0.337
Empirical 50%
interval [Qo.as Co.75] [0.176, 0.268] | [0.350,0.419] | [0.266, 0.348] | (0.341, 0.368]
Sample ratio needed
for 5% result 0.58 0.73 0.55 0.65
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have value as descriptive statistics. On this basis the coefficients on x,_, and
¥:- are hardly compelling, but since these coefficient estimates are negative for
a variety of sub-samples and since the coverage of the empirical 50% inference
interval is known to be sensitive to underelaboration but insensitive to modest
overelaboration in the VAR model specification, the orders of the lag poly-
nomials ¢,:(B) and ¢,,(B) in Eq. (1) are set to two.

Table 3 summarizes the results. The ‘sample r ratic’ figure of 0.738 for
ruse re-states the observation, noted above, that including past consumption
spending in the information set for forecasting advertising expenditures yields
a 26% reduction in the observed postsample MSE. Thus, r < 1 i$ evidence for
consumption Granger-causing advertising. In fact, the sample ratios based on
all four criteria are less than one — the question is whether or not they are
significantly less than one.

The inference procedure given by AGS indicates that this postsample MSE
reduction is significant at the 9% level; AGS interpret this as modest evidence
that consumption spending Granger-causes fluctuations in advertising expendi-
tures. However, the inference procedure given by Diebold and Mariano (1995)
indicates that the observed expected loss differential is significantly negative (so
that rpy < 1) at only the 28% level.'® These results disagree, but since there are
only 20 observations and both procedures are justified only in large samples, it
seems inappropriate to give much credence to either result.

The boostrap-based inference procedure described above was applied to these
data using Nin = 100 and N,., = 2000; these calculations tied up a desktop
computer for about 5 minutes. The median inference level exceeds 0.20 for all
four criteria, suggesting that the 9% result obtained by AGS is an artifact caused
by the small sample size. But this median inference is again the result of an
asymptotically justified procedure applied to a sample of only 20 observations.
Consequently, it is not by itself any more credible than the results obtained
using the AGS or Diebold/Mariano procedures.

However, the bootstrap-based inference procedure settles the matter by
explicitly quantifying the uncertainty in the median inference due to the small
sample size. In particular, for the test on rygg, half of the Ny, = 100 generated
starting samples vield bootstrap significance levels in the interval {0.176, 0.268].
Thus, it is reasonable to conclude that the postsample MSE drop observed by
AGS is only significant at the 18-27% level and to therefore reject the AGS
assertion that they have obtained evidence for fluctuations in consumption
spending Granger-causing fluctuations in advertising expenditures at the 10%
level of significance — their evidence is now demonstrably weaker than this.

13The Diebold-Mariano S, statistic (a unit normal under the null hypothesis of zero expected loss
differentiat) is 0.585 for this data set. Their recommended truncation lag {S(T)} is zero here since
(x, y,) are one-step-ahead forecast errors; consequently, 2n/4(0} is just the sample variance of the
average loss differential in this case.
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6. Conclusion

The postsample inference procedure proposed here

* avoids the pre-test biases which data mining induces in insample tests,

* allows for the contemporaneous crosscorrelation and serial dependence
commonly found in postsample time series data, and

* yields inferences which are reasonably credible, even for the small samples
typically available for postsample inference, by explicitly quantifying the
uncertainty in the inference introduced by the bootstrap approximation
itself.

However, now that it is possible to take postsample inference more seriously, it
is no longer either necessary or proper to remain vague about the amount of
postsample data which is needed for effective inference.

For example, the results given in Table 3 of Section 5 clearly indicate that the
26% MSE improvement obtained by AGS (1980) over.a twenty quarter post-
sample period is simply not significant at even the 10% level. By repeating these
calculations to test the null hypothesis that 7, < 1 for values of 1 increasingly
larger than omne it is possible to explicitly estimate how large an MSE improve-
ment would have sufficed in this case to yield a 50% inference interval contain-
ing 0.05. Such results are reported in the last row of Table 3; they show that an
MSE improvement of over 40% or an MAE improvement of over 30% is
needed, given the distribution and the correlation structure of these data.

Alternatively, the length of the generated samples can be increased until
a desired level of inferential precision is achieved. Such calculations, reported in
Ashley (1992), indicate that a postsample model validation period must typically
be 25-45 periods long in order to detect a 30% MSE drop at the 5% level of
significance, or 50100 periods long to detect a 20% MSE drop.

Thus, a model which cannot provide at least a 30% MSE improvement over
that of a competing model is not likely to appear significantly better than its
competitor over postsample periods of reasonable size. And evidently the 5-20
periods that have in the past been allocated to postsample mode]l valida-
tion/inference (when it was done at all) are quite inadequate to detect the modest
postsample MSE reductions one ordinarily sees. Yet retention of a postsample
maodel validation period much in excess of 30-40 periods seems rather impracti-
cal in many econometric contexts.

One resolution of this dilemma is to explicitly recognize that, since experience
indicates that postsample forecasting is quite a stringent test of the extent to
which a model has captured a stable statistical regularity, perhaps we should be
satisfied with postsample MSE or MAE improvements which are significant at
the 10% or even the 20% level. This is analogous to our shared perception that
a reasonable R? for a model estimated on cross-sectional data is substantially
lower than that for a model estimated on time series data. Another possibility is
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to revise upward our estimate of the relative importance of model validation and
to therefore allocate a substantially larger portion of the available data to
a postsample mode] validation/inference period, perhaps pooling the data at the
end once model choice/model validation is complete.

Still, if postsample model validation/inference requires more data than we
have heretofore been willing to allocate to it in order to yield reasonably
definitive results, then why do it at all? Perhaps the best response to this
question is: ‘becaunse the alternative approach of insample model valida-
tion/inference, over the same data used for specifying and estimating the mode],
makes it too easy to obtain supportive results.

It may well be that this is the principal reason why the economics community
has produced and used so many badly-misspecified models. Had we been willing
and able — through the use of tools such as the inference procedure proposed
here — to routinely confront our models with an effective postsample model
validation hurdle, I believe that we would have produced a significantly smatler
number of econometric models and a significantly larger amount of actual
progress in the resolution of both theoretical and applied economic contro-
versies.
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