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INTERNATIONAL ECONOMIC REVIEW 
Vol. 31, No. 2, May 1990 

SHRINKAGE ESTIMATION WITH GENERAL LOSS FUNCTIONS: AN 
APPLICATION OF STOCHASTIC DOMINANCE THEORY 

BY RICHARD ASHLEY 1 

Shrinkage estimation is analyzed using stochastic dominance theory over a 
broad class of loss functions. (Neither symmetry nor boundedness is im- 
posed.) A recommended shrinkage factor interval is calculated for gaussian, 
unbiased estimators based on this analysis. Since the minimum MSE estimator 
is generally found to lie within this interval for t 2 1, these results justify the 
minimum MSE criterion as a desideratum over a wide class of loss functions. 
Also, the unbiased estimator is found to be dominated by shrunken (biased) 
estimators over a number of loss function classes. This implies that the 
unbiased linear projections used to model expectations formation in neoclas- 
sical macroeconomic models are stochastically dominated by biased expecta- 
tions. Finally, practical shrinkage factors are given which are shown to 
provide modest improvements in expected losses over a wide range of 
symmetric and asymmetric loss functions. 

1. INTRODUCTION 

i. Context. Most econometricians would agree that the ideal estimator is that 
which minimizes the expected loss. Of course, this ideal is difficult or impossible to 
achieve in practice but, in fact, the ideal itself is defective because it is almost 
always predicated on an arbitrarily chosen (usually quadratic) loss function. Put 
another way, optimality per se is not all that meaningful if the loss function involved 
represents the analyst's convenience rather than the end user's preferences. 

Remarkably enough, this observation does not necessarily lead to a dead end. 
After all, we do know something about the loss function. For example, it is 
ordinarily reasonable to assume that a larger estimation error will never lead to a 
smaller loss. One might additionally be willing to assume something about the 
symmetry of the loss function. 

Such restrictions are used below, in conjunction with standard results from 
stochastic dominance theory, to obtain quite explicit results on the particular 
problem of how much one should shrink an unbiased parameter estimate toward 
zero. For example, the rightmost column of Table 1 below gives an interval of 
"best" shrinkage factors to apply to an unbiased gaussian parameter estimate, 
assuming little more than that the loss function is symmetric in the estimation 
errors; similar results are given for asymmetric loss functions in Table 2. 

Clearly, the concept used here to define "best" must transcend optimality, since 
the concept of optimality is meaningful only in the context of a particular loss 
function. Since our ignorance of the precise forms of loss functions and utility 

1 The author wishes to thank Jacques Cremer, Douglas McManus, Douglas Patterson, Eric Smith, 
Richard Steinberg, Warren Weber, and an anonymous referee for helpful comments. 
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functions is profound throughout economics, some variation on the notion of 
"best" defined below may prove useful in areas well beyond the confines of 
shrinkage estimation. 

In particular, the calculations reported below indicate that unbiased gaussian 
estimators are stochastically dominated by shrunken (biased) estimators for large 
classes of reasonable loss functions. Thus, these results have something to say 
about the reasonableness of the expectations formation mechanism characteristi- 
cally employed in rational expectations models. This issue is discussed further at 
the end of the paper. 

ii. Overview. Suppose that f3 is an unbiased estimator of f3, where f3 is one 
component of a vector of unknown parameters. Alternatively, , could equally well 
be any given linear combination of the components of this unknown vector, as 
when , is a point forecast from a linear regression model. 

Letting t denote the population t ratio of ,B (i.e. t -3/{Var (3} 5) it is easily 
shown that the shrinkage estimator, 

(1) }3(k) kJ,B 

with 

(2) k =t2/(1+t2) - kMSE 

always has smaller mean squared error (MSE) than does ,. In fact, kMSE minimizes 
MSE{,f(k)} over all k for given t.2 It is thus always optimal to shrink the unbiased 
estimator toward zero under a squared error loss function. 

This observation is hardly new-rather it has motivated the development of a 
number of estimation methods at least in part designed to exploit this potential for 
improving on the MSE of the unbiased estimator by shrinking it toward zero. 
Examples include the James/Stein estimators (James and Stein, 1961) and the ridge 
regression estimators.3 

Note, however, that MSE is of particular interest only when the loss function is 
assumed to be squared error. But this assumption is, in general, quite arbitrary. 

In this paper stochastic dominance theory is used to analyze shrinkage estima- 
tion assuming only that the loss function is a continuous, non-decreasing function 
of M(8; A), the generalized magnitude of the estimation error, e: 

(3a) M(E; A) E for E > O 

(3b) -A E otherwise 

2 This follows from MSE{f,(k)} = 32 (kit)2 + (k - 
3 The Bayesian point estimator is not included in this list because it is not always a shrinkage estimator 

in the sense used here. With gaussian conditional distributions and symmetric, unimodal prior distribu- 
tions, Andrews, et al. (1972) show that the posterior mean shrinks toward the prior mean, but the prior 
mean is not necessarily zero; also, the Bayesian estimator is not necessarily the posterior mean with other 
loss functions. 
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where E- ,(k) - 8. Thus, setting A to one corresponds to restricting the analysis 
to symmetric loss functions.4 The loss function need not be bounded; it is sufficient 
to assume that the expected loss of :(k) is bounded. The class of loss functions 
satisfying these restrictions is denoted L(A) below. 

Stochastic dominance is defined in the present context as follows: 

DEFINITION. Stochastic Dominance in Loss (SDL) 3(ka) SDL 13(kb) with 
respect to L(A) if and only if 

E loss {1(ka) - 81} < E loss {1(kb) - 8} 

for all loss functions in L(A) with strict inequality holding for at least one loss 
function in L(A). 

Stochastic dominance theory is reviewed in Section 2. There a theorem due to 
Tesfatsion (1976) is used to derive a necessary and sufficient condition under which 
,3(ka) SDL ,1(kb) with respect to L(A). This condition is independent of E(,B) and Var 
(,B); it depends only on t, on the standardized distribution of ,B (denoted T {}), and 
on the asymmetry parameter, A.5 

Given T{I} and A, this dominance condition is used to define and calculate three 
intervals for each value of t: 

(1) the inadmissible shrinkage interval, or the set of all k such that there exists 
a k' for which ,B(k') SDL ,B(k) with respect to L(A), 

(2) the unbiasedness dominating interval, or the set of all k such that ,3(k) SDL 
,B with respect to L(A), 

and 

(3) the safe admissible shrinkage interval, or the set of all k which are in the 
unbiasedness dominating interval but not in the inadmissible shrinkage 
interval. 

Any shrinkage estimator in the inadmissible shrinkage interval is clearly unac- 
ceptable; another (typically more shrunken) estimator exists which dominates it 
over the loss function class. The inadmissible shrinkage interval excludes all ,B(k) 
which are uniquely optimal for some particular loss function in L(A). There is no 
guarantee, however, that every ,B(k) which is optimal for some particular loss 
function in the class is in the unbiasedness dominating interval-a shrinkage 

4 This particular form for M(E) is used below because it is the simplest possible asymmetric 
generalization of the ordinary absolute value function. A more complex quasiconvex piecewise linear 
form could be used instead; the loss function class L would then depend on a vector of parameters. Sales 
forecasting cum inventories provides an illustrative example. A sales overestimate leads to additional 
inventory holding costs; an underestimate smaller than the amount of inventory on hand leads to 
inventory replacement costs; a larger underestimate leads to stockout costs. Assuming constant marginal 
costs in all three cases leads to a generalized magnitude function analogous to equation (3), but 
characterized by two parameters. 

5 In fact, it is because this dominance condition depends explicitly on the value of A that the loss 
function classes are defined so as to be indexed by it. 
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estimator that is optimal under one particular loss function could fail to dominate ,B 
over the entire class of loss functions. Nevertheless, if all one is certain of is that 
the loss function is in the specified loss function class, then the only way to ensure 
an expected loss which is no worse than that of f3 for all loss functions in the class 
and which is better than that of ,B for at least one loss function in the class is to 
restrict one's choice of shrinkage estimators to the unbiasedness dominating 
interval. 

In the calculations reported below, the safe admissible shrinkage interval 
contains all of the k which are sufficiently small as to lie outside the inadmissible 
shrinkage interval, yet sufficiently large as to remain inside the unbiasedness 
dominating interval. The safe admissible shrinkage interval is in no sense optimal- 
optimality is a meaningful concept only in contexts where one can plausibly specify 
a particular loss function. But where all that one can be sure of about the loss 
function is that it is in L(A), it would be difficult to justify using a shrinkage 
estimator which is not in the safe admissible shrinkage interval.6 

On the other hand, the safe admissible shrinkage interval is uninformative if it is 
too large. All three intervals are calculated in Section 3 for the particular case of 
gaussian estimators. In that case, the safe admissible shrinkage intervals are fairly 
small for |t| > 2. It is also comforting to find that the minimum MSE shrinkage 
estimator is inside these calculated safe admissible shrinkage intervals for A < 1 and 
tl- 1. 

In ordinary usage, an estimator is termed "inadmissible" if it is dominated by 
some other estimator with respect to a single, given loss function but for all values 
of distributional parameters like t. Here the word "inadmissible" is used rather 
differently in the newly defined term, "inadmissible shrinkage interval." This 
interval contains the shrinkage estimators which are dominated by some other 
shrinkage estimator with respect to a very wide class of loss functions, but for a 
single, given value of t. 

In practice, we know neither the loss function nor t. The great strength of the 
approach used here is that, while we rarely or never estimate the loss function, we 
routinely estimate t. In fact, the most commonly used tool for statistical inference 
in regression analysis-the ordinary t statistic, t-is an estimator of t. 

In Section 4 this estimator is used to make the analysis operational. There a 
shrinkage estimator which is a simple function of t is analyzed using simulation 
methods. This estimator is found to yield smaller average losses than the unbiased 
estimator over a wide variety of symmetric and asymmetric loss functions. 

2. STOCHASTIC DOMINANCE THEORY AND SHRINKAGE ESTIMATION 

Stochastic dominance theory has been developed and applied by a number of 
authors, including Blackwell (1951, 1953), Blackwell and Girschick (1954), Leh- 
mann (1955), and Hardy et al. (1959) in the statistics literature; Kolm (1966, 1969), 

6 Since , cannot possibly dominate itself, the safe admissible shrinkage interval excludes it by 
construction. In practice ,B is dominated by shrunken estimators for most values of A and t (and hence 
inadmissible) anyway, so this property is not inconvenient. 
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Rothschild and Stiglitz (1970), and Tesfatsion (1976) in the economics literature; 
and Hadar and Russell (1969) and Hanoch and Levy (1969) in the finance literature. 
Levy and Ben-Horim (1982) and Ben-Horim and Levy (1982, 1984) apply stochastic 
dominance theory to the comparison of the expected losses from two different 
estimators. Their analysis is restricted to loss functions which are symmetric and 
bounded, however, and they do not consider shrinkage estimation. The following 
theorem provides a useful necessary and sufficient condition for whether or not one 
shrinkage estimator stochastically dominates another. This condition is utilized 
below to calculate safe admissible shrinkage intervals. 

SHRINKAGE ESTIMATION DOMINANCE THEOREM. {/3(k,1) SDL 13(kb) w.r.t. L(A)} if 
and only if 

[ (z, ka) ? fl(z, kb) for all z 0 o, with strict 
inequality holding for at least one such z and 

fl(z, k) 1 - T{[(1 - k)t - z]lk} + T{[(1 - k)t + z/A]/k}I 
where 

(a) ,3(k) k,B, ,B is an unbiased estimator of ,B with standardized, right 
continuous distribution TP}, and given t -,/{Var (,B)} 5, 

(b) L(A) is the class of all continiuous, non-decreasing functions of M{/3(k) - 
,B; A} (defined in equation (3)) such that the expected loss from ,3(k) is 
unbounded for at most one non-negative value of k, 

and 

(c) {J3(ka) SDL 13(kb) w.r.t. L(A)} means that the expected loss from 13(ka) is 
less than or equal to that from 13(kb), with strict inequality holding for at 
least one loss finction in L(A). 

PROOF. Since ,B has mean ,B and variance o-2 =J2/t2, /(k)'s estimation error 
(E) has mean (k - 1)f3 and variance k2 o-2. Consequently, the standardized 
estimation error is 

(4) {e - (k - 1),B}/(ko-) = {(1 - k)t + (Elo)}lk, 

so that 

(5) 1 - Tf[(l - k)t + (-zlo)]/k} 

is the probability that E exceeds the positive value -z and 

(6) T{[(1 - k)t + (z/Aoa)]/k} 

is the probability that E is less than the negative number z/A. Thus, 

(7) 1 - Tf[(l - k)t + (-zlo)]Ik} + P{[(1 - k)t + (z/Ao)]/k} 

is the probability that M(E; A) - -z or, equivalently, that -M(E; A) ? z. Hence, 
Qi(z/o-, k) is the c.d.f. of -M(E; A). 
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It then follows from Theorem 1* of Tesfatsion (1976) that J(k,) SDL 1(kb) with 
respect to L(A) whenever fQ(zlo-, kj) is less than or equal to fQ(zlo-, kb) for all z/o-, 
with strict inequality holding for at least one value of z/a. {Tesfatsion's theorem is 
stated in terms of the utility generated by the returns from a risky asset. Letting the 
"return" on the estimator be minus the generalized magnitude of the estimation 
error, E, and hence 

(8) Utility {-M(o(k) - f); A)} -Loss {M(P(k)) - f; A}, 

it follows that each loss function in L(A) corresponds to a utility function in what 
Tesfatsion calls U*(F, G).} Since -M(E; A) is inherently non-positive, f(z/o-, k) is 
always one for positive z/o- regardless of k; consequently, only non-positive values 
of z/o- need to be examined. Since the condition fQ(z/o-, ka) ? fQ(zlo-, kb) must hold 
for all z/o- < 0 and since z and o- appear only as the quotient z/o-, there is no loss of 
generality in replacing z/o- by z. 

This completes the proof of the theorem. Note that the dominance condition 
depends only on ka , kb, T{@}, t, and A.7 

3. SAFE ADMISSIBLE SHRINKAGE INTERVALS 

The Shrinkage Estimation Dominance Theorem proven above specifies how to 
test for p3(ka) SDL 13(kb) with respect to L(A) given t, A, and P{V}. This result makes 
feasible the construction of inadmissible shrinkage intervals, unbiasedness domi- 
nating intervals, and safe admissible shrinkage intervals. These intervals are 
calculated below as a function of t for the particular case of gaussian ,B (i.e. T{j} is 
the unit normal distribution function). The theorem is used to explicitly determine 
whether or not 13(ka) SDL 13(kb) for each (ka , kb) pair over a grid of values ranging 
from .01 to 1.00 in increments of .01.8 Dominance is checked for each pair by 
numerically comparing fQ(z, ka) to fQ(z, kb) over a grid of negative values of z; the 
density and extent of this grid are increased until the results stabilize. 

Table 1 summarizes the results for the special case of symmetric loss functions- 
i.e. the case A = 1. Note that ,B itself (i.e. ,B(1)} is always in the inadmissible 
shrinkage interval, along with an interval of shrinkage estimators which are 
insufficiently shrunk. Thus, since ,B is stochastically dominated, some degree of 
shrinkage is always called for. Note also that it is possible to shrink too much-the 
unbiasedness dominating intervals do not extend down to zero. 

For significant ,B's (i.e. for ,B such that |t| > 2), the lengths of the safe admissible 
intervals are only .10 or less. Thus, for gaussian estimators and symmetric loss 
functions, one can say quite a bit about the amount of shrinkage which is 
reasonable. 

7 This theorem uses first degree stochastic dominance. A similar theorem can be proven, using second 
degree stochastic dominance, by further restricting the loss function class to convex functions of the 
generalized error magnitude. No doubt because L(A) is already quasiconvex in the estimation error itself 
(E), initial calculations showed that this extension does not lead to interestingly different results. 

8 Values of k exceeding one are also examined. They are always outside the unbiasedness dominating 
interval. 
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Table 2 extends these results to asymmetric loss function classes-i.e. L(A) with 
A # 1. Here a remarkable pattern emerges: the shrinkage intervals with respect to 
L(A) with A < 1, where the asymmetry favors shrinkage, are virtually identical to 
those with respect to L(1). Indeed, where the value of t is not too high, the 
shrinkage intervals are very similar for A > 1 as well. 

Where A and |t| are both sufficiently large, however, the shrinkage estimators no 
longer dominate ,B so the safe admissible shrinkage interval disappears. This 
happens because, with Itl large, /3 is so accurate that the variance drop from 
shrinkage is unable to compensate for any degree of bias in a direction which is 
penalized by loss functions with A > 1. 

It is also worth noting that, for Itl -1 and A ' 1, the minimum MSE shrinkage 
estimator always lies inside the safe admissible shrinkage interval, toward the 
upper end. This result provides a rationale for minimum MSE estimation methods 
(James/Stein, ridge regression, etc.) which substantially transcends the squared 
error loss function assumption. 

TABLE I 

SHRINKAGE INTERVALS {GAUSSIAN ,B AND SYMMETRIC LOSS FUNCTIONS} 

Unbiasedness 
Inadmissible Dominanting Safe Admissible 

Itla kb MSE Interval Interval Interval 

0.50 .20 [.40, 1.00] [.23, 1.00) [.23, .39] 
1.00 .50 [.63, 1.00] [.44, 1.00) [.44, .62] 
1.50 .61 [.76, 1.00] [.60, 1.00) [.60, .75] 
2.00 .80 [.84, 1.00] [.71, 1.00) [.71, .83] 
2.50 .86 [.89, 1.00] [.79, 1.00) [.79, .88] 
3.00 .90 [.92, 1.00] [.84, 1.00) [.84, .91] 
4.00 .94 [.95, 1.00] [.90, 1.00) [.90, .94] 
5.00 .96 [.99, 1.00] [.93, 1.00) [.93, .98] 

a Due to the symmetry of both M(E;1) and P{.}, the sign of t is irrelevant. 
b This is the minimum MSE shrinkage estimator, t2/(l +t2). 

TABLE 2 
SAFE ADMISSIBLE SHRINKAGE INTERVALSa {GAUSSIAN f AND ASYMMETRIC LOSS FUNCTIONS} 

Itlb k`SE A = .50 A = .75 A = .90 A = 1.00 A = 1/.90 A = 1/.75 A = 1/.50 

0.50 .20 [.22, .38] [.23, .38] [.23, .38] [.23, .39] [.23, .39] [.24, .40] [.26, .37] 
1.00 .50 [.44, .61] [.44, .61] [.44, .61] [.44, .62] [.45, .62] [.46, .65] [.57, .77] 
1.50 .61 [.59, .74] [.60, .74] [.60, .75] [.60, .75] [.61, .76] [.64, .80] [.93, .96] 
2.00 .80 [.70, .82] [.71, .82] [.71, .82] [.71, .83] [.72, .84] [.78, .89] 
2.50 .86 [.78, .87] [.79, .87] [.78, .87] [.79, .88] [.80, .89] [.91, .95] 
3.00 .90 [.83, .90] [.83, .90] [.84, .91] [.84, .91] [.86, .93] [.99, .99] 
4.00 .94 e [.89, .94] [.90, .94] [.90, .94] [.90, .94] [.94, .97] 
5.00 .96 [.93, .96] [.93, .96] [.93, .96] [.93, .98] [.98, .99] 

( If the safe admissible shrinkage interval is given as [x,y], then the unbiasedness dominating 
interval is [x,1) and the inadmissible shrinkage interval is (y,l]. 

b Since M(E;A) is asymmetric for A i 1, the sign of t is relevant. The safe admissible shrinkage 
interval with respect to L(A) for -1B (i.e. for t < 0) is equivalent to the interval with respect to L(1/A) 
for ,B. 

C This is the minimum MSE shrinkage estimator, t2/(I +t2). 



308 RICHARD ASHLEY 

Finally, note that, for A < 1, /3 itself is always dominated by shrunken, biased 
estimators. The implications of this result for rational expectations modelling are 
discussed in Section 5. 

The practical application of these results is limited, however, by the fact that t is 
not known. This drawback is remedied in the next section. 

4. IMMEDIATELY APPLICABLE RESULTS 

In theory, it makes sense to require that a shrinkage estimator not only dominate 
the unbiased estimator (i.e. is "safe") but that it is also sufficiently shrunken that 
no other shrinkage estimator dominates it (i.e. it is "admissible"). As shown above, 
this can be done when t, the population t ratio, is known; the ensuing theoretical 
results yielded useful insights. 

In practice, however, the population t ratio is not known. It can, of course, be 
estimated using t, the usual sample t ratio, but this estimator has two major defects. 
First, although t's sampling distribution has a well known form (noncentral t), its 
density depends on a noncentrality parameter whose value is t itself and hence is 
unknown. This parameter can be approximated for numerical purposes by t,9 but 
this expedient is rendered less palatable by i's other major defect-it is quite noisy. 
Thus, one can calculate a k*(t) which approximately maximizes the probability 
(conditional on the observed t) that the resulting shrinkage estimator {k*(t)/3} is in 
the safe admissible shrinkage interval with respect to L(A) for gaussian ,3. However, 
the resulting estimator will typically have a larger expected loss than does ,3 itself 
except when t is very small. This is because the additional sampling variation in 
k*(t)13 due to the sampling errors in t swamps the beneficial effect of the shrinkage. 10 

Nevertheless, it is still possible to obtain a shrinkage estimator which dominates 
the unbiased (gaussian) estimator with respect to L(A) over a substantial range of t 
values. For example, notice from Table 1 that k = .95 is in the unbiasedness 
dominating interval with respect to L(1) over the entire range of t values consid- 
ered. Reference to Table 2 shows that this is still the case for all values of A ? 1. 
In fact, a systematic calculation shows that k = .95 is in the unbiasedness 
dominating interval with respect to L(1) for all t E [-6.085, 6.085]."1 A similar 
calculation shows that k = .99 dominates ,3 with respect to L(1) for all t E [- 14.054, 
14.054]. (Table 3 gives the analogous t ratio intervals for additional values of k.) 
Thus, in many instances, a 5% shrinkage is clearly safe, while a 1% shrinkage would 
nearly always be safe-point estimates with t ratios in excess of fourteen are quite 
uncommon. 

9 Actually, one would multiply i by a factor, depending on the number of degrees of freedom, which 
makes the resulting estimate unbiased for t. (See Patel and Read 1982, p. 117 for details.) 

10 One can also calculate the minimum value of k (conditional on the observed value of t) such that the 
probability of being outside the unbiasedness dominating interval does not exceed some given value, p. 
However, the resulting k values depend too strongly on t for the resulting estimator, to work well; again, 
this is due to the sampling errors in t swamping the beneficial effect of the shrinkage. 

1 l This calculation uses the Shrinkage Estimation Dominance Theorem of Section 2 to explicitly check 
,3(.95) SDL ,3 over a grid of t values. 
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The foregoing results raise the following two questions: 

1. Does k = .95 or .99 provide a nontrivial improvement in expected losses 
over the appropriate range of t values? 

and 

2. Can one do better (in terms of expected loss reduction over a reasonable 
range of t values) by allowing k to depend weakly on t? 

These questions are addressed below using simulation methods. 
For a given value of t, /3 is generated as 

,3 -N(1, lit2) 

and t is calculated from 

t^ = ,8 tl (x/3 0).5 

where x is generated as X2(3O) independently of ,3. Thus, each value of t is a pick 
from the usual t distribution with 30 degrees of freedom. (Similar results were 
obtained using 60 degrees of freedom.) 

Since ,3 is unbiased by definition, the true value of ,3 assumed here is one. The 
average squared values of /3 - 1, .99,3 - 1, and .95,3 - 1 are then calculated over 
40,000 realizations of /3. Table 4 gives the percentage MSE reduction (compared to 
the unbiased estimator, ,3) provided by each of these two shrinkage estimators. 12 

Note that the 5% shrinkage yields a substantial (3% to 9%) MSE reduction so 
long as t < 5 and that the 1% shrinkage yields a 1% to 2% MSE reduction so long 
as t < 10. (Indeed, we know from the results in Table 3 that k = .99 dominates ,3 
with respect to all loss functions in L(1) for all t E [- 14.054, 14.054].) These 
improvements are admittedly not dramatic, but they are not negligible either and 
they are obtainable at essentially zero cost. 

Table 4 also gives the MSE reduction results for a composite estimator which is 
a compromise between these two shrinkage estimators. This composite estimator is 

TABLE 3 
UNBIASEDNESS DOMINATING T RATIO INTERVALSa 

k t ratio interval 

.80 [-2.665, 2.665] 

.85 [-3.225, 3.225] 

.90 [-4.125, 4.125] 

.95 [-6.085, 6.085] 

.96 [-6.865, 6.865] 

.97 [-7.984, 7.984] 

.98 [-9.854, 9.854] 

.99 [-14.054, 14.054] 

" Each entry gives the interval of t ratio values for which a given value of the shrinkage factor 
k is in the unbiasedness dominating interval with respect to L(1). Gaussianity is assumed. 

12 Of course, this is a relevant measure only for squared error loss functions; estimator performance 
with respect to other loss functions is explicitly considered later in this section. 
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k,1 with k = .96 for t^ < 1 and k = min {.96 + (.02/3)(It - 1), .98} for Itl > 1. This 
particular compromise is the product of a good deal of experimentation. Estimators 
which depend more heavily on t than does this estimator perform less well because 
of the additional sampling error introduced by that heavier t dependence. Estima- 
tors which depend still less on t perform well only over a smaller range of t values. 
As the results quoted in Table 4 show, this composite shrinkage estimator works 
noticeably better than k = .99 for t < 2.5 and substantially better than k = .95 for 
t - 6. While k = .99 is clearly preferable to the composite estimator for t - 9, it 
must be recognized that the expected loss improvements available from shrinkage 
are minor for estimators this accurate anyway.'3 

Table 5 examines the performance of the composite estimator for a number of 
other symmetric loss functions. These results indicate that this shrinkage estimator 
is a noticeable, if not always substantial, improvement over the unbiased estimator 
over a wide variety of loss functions in L(1). 

Finally, Table 6 examines the performance of the composite shrinkage estimator 
over loss functions with different values of the asymmetry parameter, A. (This 
parameter is defined in equation 3.) As one might expect, the gains to shrinkage are 
enhanced when the asymmetry itself favors shrinkage toward zero (A < 1 for 3 > 
0) and are diminished otherwise. It is interesting to note, however, that the 
composite shrinkage estimator is still an improvement over the unbiased estimator 
for A = 1/.90 when t - 6 and is still an improvement for A = 1/75 for t < 2. 

This composite shrinkage estimator is not in itself useful for interval estimation 
or for statistical inference purposes since its sampling distribution is unknown. But 
that defect is irrelevant here-this estimator's raison d'etre is point estimation, 
where what is wanted is the best single estimate for ,3. In any case, ,3 is still 
available for those other purposes. For example, if a measure of the estimation 

TABLE 4 
SHRINKAGE ESTIMATORS PERCENTAGE MSE REDUCTION a (A = 1.00) 

b~~~~~~~~~~~ 
t ratio .95,3 Compositeb .99,3 

1.0 9.5 6.0 2.0 
2.0 8.9 3.8 2.0 
2.5 8.1 2.6 1.9 
3.0 7.5 1.9 1.9 
4.0 5.4 1.5 1.8 
5.0 3.4 2.3 1.7 
6.0 0.8 2.3 1.7 
7.0 -2 1.8 1.5 
8.0 -7 1.8 1.2 
9.0 -10 1 1.3 

10.0 -15 0 1 

(I Figures quoted to .1 are accurate to +.1; figures quoted as integers are accurate to ? .5. 
b This estimator is k/ where k = .96 for Itl s 1 and k = min {.96 + (.02/3) (Ili - 1), .98} for 

I> 1. 

13 In particular, note that the seemingly large percentage increases in MSE from the 5% and the 
composite shrinkage estimators in Table 4 for large values of t actually represent modest MSE increases 
which are being divided by a small base value. 
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uncertainty is desired, one could still quote a 95% confidence interval for ,3 
alongside the composite point estimate. 

In summary, shrinkage is most effective for estimators with moderate or low t 
values. Estimators with very high t ratios are already so accurate that the shrinkage 
does not lower the variance enough to compensate for any degree of bias. Where 
t > 9 is not a realistic possibility-and this, of course, includes most estimators 
found in applied econometric work-the composite shrinkage estimator analyzed 
here provides a modest (but non-negligible) expected loss improvement (compared 

TABLE 5 
COMPOSITE SHRINKAGE ESTIMATORa 

PERCENTAGE EXPECTED LOSS REDUCTION FOR VARIOUS SYMMETRIC LOSS FUNCTIONS b 

t M M2 M4 log (1+ M) (lo+m) log (1+M4) eM eM eM 

1.0 3.2 6.0 10.9 2.3 4.1 6.0 0.57 1.10 2.50 
2.0 1.8 3.8 8.0 1.4 3.0 5.8 0.20 0.28 0.38 
2.5 1.1 2.6 6.1 0.9 2.1 4.8 0.11 0.14 0.15 
3.0 0.7 1.9 5.0 0.5 1.5 4.2 0.05 0.07 0.06 
4.0 0.7 1.5 3.5 0.6 1.4 3.3 0.05 0.04 0.02 
5.0 1.2 2.3 4.2 1.1 2.2 4.1 0.07 0.04 0.01 
6.0 1.1 2.3 4.2 1.0 2.2 4.2 0.05 0.03 0.00 
7.0 0.9 1.8 3.7 0.8 1.8 3.7 0.04 0.02 0.00 
8.0 0.9 1.8 3.9 0.8 1.7 3.8 0.03 0.01 0.00 
9.0 0.5 1.0 2.2 0.4 1.0 2.2 0.02 0.01 0.00 

10.0 0.1 0.2 0.1 0.1 0.2 0.1 0.00 0.00 0.00 

" This estimator is kf where k = .96 for Iil s I and k = min {.96 + (.02/3) (Itl - 1), .98} for 
ItlI> 1. 

b M is the generalized magnitude function defined in equation (3). Figures are accurate to + 1 in 
last digit quoted for t S 4, +2 for t S 8, and +3 for t > 8. 

TABLE 6 
COMPOSITE SHRINKAGE ESTIMATORa 

PERCENTAGE EXPECTED LOSS REDUCTION FOR VARIOUS ASYMMETRIC LOSS FUNCTIONSb 

t A= .50 A= .75 A= .90 A= 1.00 A= 1/.90 A= 1/.75 A= 1/.50 

1.0 8.7 7.2 6.5 6.0 5.5 4.7 3.3 
2.0 8.8 6.1 4.6 3.8 2.9 1.4 -1.4 
2.5 8.8 5.5 3.7 2.6 1.6 -.2 -3.4 
3.0 8.9 5.2 3.1 1.9 0.6 -1.4 -5.1 
4.0 10.2 5.6 3.0 1.5 0.1 -2.4 -7.0 
5.0 12.1 6.9 4.1 2.3 0.6 -2.3 -7.5 
6.0 13.7 7.6 4.3 2.3 0.3 -3.0 -9.1 
7.0 15.1 8.0 4.2 1.8 -0.5 -4.3 - 11.3 
8.0 16.7 8.8 4.4 1.8 -0.9 -5.3 -13.5 
9.0 17.8 8.9 4.0 1.0 -2.0 -7.0 -16.1 

10.0 19.1 9.0 3.5 0.2 -3.1 -8.7 -18.8 

a This estimator is k p where k = .96 for li s 1 and k = min {.96 + (.02/3) (Itl - 1), .98} for 
Itl> 1. 

b The loss functions considered in this Table are all of the form M2. The generalized magnitude 
function (AM) and the asymmetry parameter (A) are defined in equation 3. Accuracy is as in Table 
5. 
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to the unbiased estimator) over a wide range of loss functions, symmetric and 
asymmetric. 

5. CONCLUSIONS 

Three kinds of conclusions emerge from these results: 

(1) Since the minimum MSE shrinkage factor 

kMSE(t) = t2/(I + t2) 

is in the safe admissible shrinkage interval with respect to L(A) for all 
gaussian estimators with t ? 1 and A < 1, minimum MSE methods can be 
justified from a perspective which dramatically transcends the squared 
error loss function. 

and 

(2) It is feasible-in fact, easy-to use the results of Section 4 to shrink 
unbiased gaussian parameter estimates enough to ensure that the resulting 
estimator dominates the unbiased estimator with respect to a wide class of 
symmetric and asymmetric loss functions over a substantial range of t 
values. 

and 

(3) The unbiased gaussian estimator is always in the inadmissible shrinkage 
interval with respect to L(1), the class of (symmetric) loss functions which 
are continuous, nondecreasing functions of the error magnitude. This is 
true for many asymmetric loss function classes as well. Thus, unbiased 
gaussian parameter estimates (and point forecasts) are typically dominated 
by biased estimators which are shrunk to some degree toward zero. 

This last result implies that the unbiased expectations generating mechanism 
characteristic of many modern macroeconomic models can only be optimal (i.e. 
rational) in the limit where the sampling variation in the estimated coefficients of the 
model available to the agents is negligible. We live in a world of distinctly finite 
samples due, in part, to the fact that most structural coefficients are clearly unstable 
over long time periods. Consequently, sampling variation in estimated coefficients 
is and will remain a fact of life. 

The results developed above provide explicit guidance (not tied to an arbitrary 
squared error loss function assumption) as to how much shrinkage is reasonable 
when the relevant random variable is gaussian, as might well be the case for a linear 
neoclassical macroeconomic model. 14 These results thus make it possible to 
investigate the sensitivity of the policy conclusions from such a model to reason- 

14 Similar shrinkage results could be obtained using the techniques developed above with a (given) 
non-gaussian distribution, so long as it is symmetric. 
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able amounts of bias in the agents' expectations. 15 
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