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A TEST OF THE GARCH(1, 1)
SPECIFICATION FOR DAILY
STOCK RETURNS

RICHARD A. ASHLEY AND DOUGLAS M. PATTERSON
Virginia Tech (VPI)

Daily financial returns (and daily stock returns, in particular) are commonly modeled as
GARCH(1, 1) processes. Here we test this specification using new model evaluation
technology developed by Ashley and Patterson that examines the ability of the estimated
model to reproduce features of particular interest: various aspects of nonlinear serial
dependence, in the present instance. Using daily returns to the CRSP equally weighted
stock index, we find that the GARCH(1, 1) specification cannot be rejected; thus, this
model appears to be reasonably adequate in terms of reproducing the kinds of nonlinear
serial dependence addressed by the battery of nonlinearity tests used here.
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1. INTRODUCTION

The nonlinear serially dependent ARCH/GARCH and EGRACH group of models
are widely accepted among econometricians and time series statisticians as the
premier model of stock market returns, especially so for the GARCH(1, 1) model
[see Bollerslev (1986) for the derivation of the model]. This wide acceptance
rests on two bodies of empirical evidence. First, a number of statistical tests
(bispectrum, BDS, Engel’s LM, etc.) easily reject the null hypothesis of a linear
process; this evidence against a linear process has been accumulating since the
mid-1980s. [For example, see Hinich and Patterson (1985) and Patterson and
Ashley (2000).] Second, the parameter estimates of a GARCH(1, 1) process are
statistically significant when a model is estimated on various examples of realized
stock market returns—market indices and individual stock issues. This statistical
significance of the parameter estimates is apparently sufficient evidence for the
vast majority of empirical investigators to accept these models as true. In the paper
“ARCH Modeling in Finance,” Bollerslev et al. (1992) cite over 300 papers, most
of which touch at some point on the ARCH family of models to empirically study
either the volatility or the risk premium in asset returns.

On the other hand, there is not a consensus among finance academics that
the ARCH/GARCH specification for stock market returns dominates all other

Address correspondence to: Douglas M. Patterson, Department of Finance (0221), Virginia Tech, Blacksburg,
VA 24061, USA; e-mail: amex@vt.edu.

c© 2010 Cambridge University Press 1365-1005/10 137



138 RICHARD A. ASHLEY AND DOUGLAS M. PATTERSON

models. One reason for this is that there is no compelling theory to explain why
returns should be generated by this particular family of nonlinear processes. In
addition, although it is generally agreed that market volatility varies over time,
there are alternative (and linear) models of returns that can also explain time-
varying volatility—e.g., stochastic volatility models, seasonal ARIMA models,
and random jump processes.

2. MODEL EVALUATION

In this paper we carefully evaluate the ability of the ARCH family of models to
explain the nonlinear dependence of stock market returns. A common approach
for comparing alternative time series models is to ask which model fits the data
best, based on R2

c , FPE, AIC, BIC, etc. Sample fit is important, but because the
sample data are customarily (and necessarily) mined to identify the particular form
of whatever kind of model is being considered, the fact that the resulting model fits
the data well usually reflects the flexibility of the framework being used (GARCH,
threshold autoregressive, Markov switching, neural net, or whatever) more than it
does which kind of model is closer to the specification that actually generated the
data.

Another approach relies on relative out-of-sample forecasting effectiveness as a
criterion for model choice. [See, for example, Diebold and Mariano (1995), Ashley
(1998), and McCracken (2007).] Out-of-sample forecasting can give substantially
credible support to a particular model or to one model specification over another.
But the results from this approach can be idiosyncratic to the particular model
validation period chosen unless the holdout sample is lengthy, in which case
an insufficient number of observations may remain for model specification and
estimation. (In particular, one might expect that an adequate postsample forecast
period for evaluating a state-switching model would need to be sufficiently long to
include a number of state switches.) Quite often, moreover, one finds that neither of
two candidate nonlinear time series models provides out-of-sample forecasts that
are very useful; in such cases it seems unreasonable to prefer one model to the other
on this basis. Such poor out-of-sample forecasting can arise because both model
specifications are totally inadequate, but it can also reflect the fact that forecasts
from nonlinear models are very sensitive to even modest model misspecification.
In other words, it might be the case that one model is substantially closer to the
true data-generating mechanism in the ways we most care about, yet neither model
is close enough to forecast out of sample creditably well.

3. A NEW APPROACH

In Ashley and Patterson (2006) we introduced a new approach—complementary
to the “sample fit” and “out-of-sample forecasting” approaches outlined above—
for either evaluating an individual nonlinear times series model or comparing two
such models. Our approach is based on a battery of distinct nonlinearity tests.
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The reason that there are so many tests for nonlinear serial dependence (and the
reason that no comprehensive model identification algorithm for nonlinear models
has found widespread acceptance) is that there are many distinctly different ways
in which the current value of a time series can depend nonlinearly on its own past.
Consequently, many tests for nonlinearity can be constructed, each focusing on a
different aspect or effect of nonlinear serial dependence—e.g., one test might focus
on the way nonlinear serial dependence impacts the higher-order moments of the
time series, whereas another test might look at how close different sequential m-
tuples of the process are to each other. Thus, some nonlinearity tests will naturally
be substantially more powerful than others against specific alternatives.

Our approach leverages this diversity by taking the pattern of p-values with
which a set of nonlinearity tests rejects the null hypothesis (of a linear generating
mechanism for a particular time series) as a new stylized fact characterizing the
nonlinear serial dependence in this time series. One can then ask of any estimated
model for this time series, “How well does it reproduce this stylized fact?”

Thus, our approach is similar in spirit to the more descriptive examination by
Harding and Pagan (2002) of how well a statistical model is able to track specific
features of the shape of the business cycle. Indeed, if one includes explicitly
shape-related tests—e.g., the tests for steepness and depth proposed by Ramsey
and Rothman (1996), Verbrugge (1997), and others—in the set of nonlinearity
tests considered, then our approach subsumes and extends theirs.

One could simulate data from the estimated model and compute the power of
each nonlinearity test to reject the null hypothesis of a linear generating mechanism
against this particular alternative generating mechanism. If the estimated model
were effective at modeling the nonlinear serial dependence in the actual data,
then one would expect that the tests that were most powerful in detecting this
alternative would the ones that rejected the null hypothesis with the lowest p-
values using these simulated data sets. In contrast, if the tests that provided the
strongest evidence for nonlinearity were ones with relatively small power to detect
the kind of nonlinearities generated by this model, it seems less plausible that the
actual generating mechanism for these data would be of this kind.

Our approach takes this reasoning one step further, allowing us to construct a
straightforward statistical test of the proposition that a specific nonlinear model
is capturing the nonlinear serial dependence in the data, as distinct from merely
fitting the sample data well in a least-squares sense.

Suppose that r nonlinearity tests have been applied to the sample data, yielding
r p-values (pobs

1 , . . . , pobs
r ) for rejection of the null hypothesis of a linear generat-

ing mechanism for the time series. Consider, then, a “portmanteau” test statistic
quantifying the discrepancy between this set of results and the set of p-values one
might expect had the sample data been generated by this specific model:

AP(p1, . . . , pr) =
r∑

i=1

[pi − E{pi}]2.
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Note that the expectation in this expression is taken over the joint distribution of
the r-vector (p1, . . . , pr); this vector is a random variable because the p-value for
each of the r nonlinearity tests is a monotonic transformation of the test statistic
for that particular nonlinearity test.

Both this expectation and the sampling distribution of the AP test statistic are
readily obtained by Monte Carlo simulation under the null hypothesis that the
sample data are generated by a particular model. Indeed, these simulations are
exactly those that one would do in order to calculate the power of the individual
nonlinearity tests for such a model, so that the value of E{p1}, . . . , E{pr} obtained
in this way is closely related to the usual estimate of the power of these nonlinearity
tests against this alternative.1

The p-value at which one can reject the null hypothesis that the sample data are
generated by this particular model is thus the fraction of these 1,000 simulations
that yield AP values in excess of AP(pobs

1 , . . . , pobs
r ). One could interpret this

p-value as quantifying how unlikely it would be—under the null hypothesis that
this model generated the data—to observe a sample pattern of nonlinearity test
p-value results this distinct from what the powers of the individual tests against
this particular alternative would suggest.

4. THE DATA

The data used for the test are the daily returns (including dividends) to the CRSP
equally weighted stock index; this index includes all NYSE and AMEX and the
major NASDAQ stocks. The sample period used here is January 6, 2006, through
December 31, 2007, for a total of 500 daily observations.

5. NONLINEARITY TESTS CONSIDERED

The six nonlinearity tests employed here are listed in Table 1. These tests are
completely documented in Patterson and Ashley (2000) and in Ashley and Pat-
terson (2006). However, for completeness, we note here that the McLeod/Li test
is implemented using 24 squared serial correlation terms; the Engle Lagrange
multiplier (LM) test is implemented using five lags of the squared series; the
BDS test is implemented with an embedding dimension of two and the parameter

TABLE 1. Nonlinearity tests employed

Test Focus

McLeod/Li ARCH/GARCH
Engle Lagrange multiplier ARCH/GARCH
BDS General serial dependence
Hinich bicovariance Third-order moments (time domain)
Tsay Quadratic terms (time domain)
Hinich bispectrum Third-order moments (frequency domain)
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ε is set to one; the Hinich bicovariance test is implemented using lags up to 5004;
the Tsay test is implemented using lags up to five; and the Hinich bispectrum
test is implemented using the interdecile range dispersion measure and smoothing
constant M = 5006.2 Critical points for each test are obtained via bootstrap
simulation (with 10,000 replications) applied to data that were prewhitened using
an AR(p) model, where p is chosen by minimizing the BIC criterion.

Many other tests for nonlinear serial dependence have been described in the
literature, including Ramsey (1969), Ashley and Patterson (1986), Saikkonen and
Luukkonen (1988), White (1989), Mizrach (1991), Nychka et al. (1992), Kaplan
(1993), Dalle Molle and Hinich (1995), and Hansen (1999). Because asymmetry
is a common consequence of nonlinear serial dependence, one might also consider
tests for steepness or depth, as in Ramsey and Rothman (1996) and Verbrugge
(1997). No representation is made here that the group of tests listed in the table is
in any sense optimal or that these tests in any well-defined sense span the space
of all possible nonlinearity tests.

6. STATISTICAL RESULTS

We considered the three members of the ARCH family that have been most
commonly suggested as models of stock market returns: ARCH, GARCH, and
EGARCH. Model estimation was carried out using PROC AUTOREG in the SAS
system. The Lagrange Multiplier (LM) test for ARCH disturbances indicated
significant dependence out to at least lag 12; therefore an ARCH model is not
appropriate for these data, but rather a GARCH or EGARCH model is suggested.
We attempted to fit an EGARCH(2, 1) model but the SAS algorithm did not
converge. The GARCH(1, 1) model was the only specification for which the
estimation procedure converged to statistically significant parameter estimates
consistent with a stable model. We display significant parameter estimates for the
GARCH(1, 1) model in Table 2, using the usual notation for the parameters.

We simulated this estimated GARCH(1, 1) model 1,000 times using the pa-
rameter values given in Table 2. After the first 300 generated data values were
dropped (to eliminate possible start-up transients), each simulated data set was
the same length as the original sample—i.e., 500 observations. Applying the six
nonlinearity tests to each of these 1,000 generated data sets (and also to the sample
data), we obtained the results in Table 3.

TABLE 2. GARCH(1,1) parameter es-
timates

Parameter Estimate t-value

Omega 2.157 × 10−6 2.17
Alpha 1 0.0623 3.01
Garch 1 0.8997 25.00
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TABLE 3. Summary of test results

McLeod/ Engle Hinich Hinich
Li LM BDS bicovariance Tsay bispectrum

p-value for rejection of .000 .000 .083 .000 .036 .414
Ho : x(t)∼ i.i.d.
(sample data)

Estimated E{pi} .103 .120 .158 .128 .324 .392
(generated data)

Estimated power of 5% testa .693 .633 .484 .577 .203 .130
(generated data)

aRegarding the relationship between E{pi } and test power, see note 1.

The results in Table 3 indicate that the pattern of sample test results is broadly
in accordance with what one might expect from the pattern of the estimated
power for each of these tests: the null hypothesis that returns are identically and
independently distributed (serially i.i.d.) is rejected—very strongly in three cases
and at the 10% level of significance in one case—for all four of the tests that
have relatively high power against this GARCH(1, 1) alternative. And the null
hypothesis that returns are serially i.i.d. is not rejected for one of the two tests that
have low power against this alternative. The only discrepancy is on the results for
the Tsay test: here the test has relatively low power against the null hypothesis
that returns are serially i.i.d., but using the sample data the Tsay test rejects this
null hypothesis with p-value equal to .034.

This discrepancy was decidedly not statistically significant, however: fully
81% of the 1,000 AP test statistic values obtained using data simulated from
the GARCH(1, 1) process exceeded the AP test statistic value obtained using the
p-values, tabulated above, for the six tests applied to the sample data.3 This frac-
tion can be interpreted as the p-value at which one can reject the GARCH(1, 1)
specification as adequately modeling these aspects of the process that actually
generated these data.

7. CONCLUSIONS

We conclude that the GARCH(1, 1) model—which (over this sample period) is
the only viable model from the ARCH/GARCH family with regard to the CRSP
equally weighted index of daily returns—cannot be rejected as an appropriate
model for the process generating these daily stock return data. This model thus
appears to be reasonably adequate in terms of reproducing the kinds of nonlinear
serial dependence addressed by this battery of nonlinearity tests, at least over the
sample period (2006–2007) considered here. Patterson and Ashley (2000, Chapter
6) find strong evidence that nonlinear serial dependence in daily returns to the
S&P stock market index is episodic in nature, so it is entirely possible that the
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GARCH(1,1) model will be rejected in other time periods; this awaits further
work.

Further, these results do not rule out the possibility that the daily returns to
the CRSP equally weighted stock index are actually generated by a potentially
forecastable mechanism in which current returns are a nonlinear function of past
returns (plus a serially i.i.d. innovation) rather than by a GARCH process, for
which only the variance of returns is forecastable. This is because nonlinearity
tests are all designed to detect departures from a null hypothesis in which the return
series is both independently and identically distributed. Thus, although the data
simulated from the GARCH(1, 1) process (being, by construction, heteroskedas-
tic over time) violate the “identically distributed” part of this null hypothesis,
the observed rejections of this null hypothesis in the sample data may be arising
instead from violations of the “independently distributed” part of this null hypoth-
esis, which have been shown in Ashley (2009) to necessarily induce conditional
heteroskedasticity in a time series. Distinguishing between these two possibilities
must await further work.

NOTES

1. The estimated power of the 5% test would be the fraction of the 1,000 p-values that do not
exceed .05; E{pi} is the average of the 1,000 p-values.

2. See Appendix 1 of Ashley and Patterson (2006) for complete descriptions and definitions of
these implementing parameters. Primary references for these tests are McLeod and Li (1983), Engle
(1982), Brock et al. (1986), Hinich and Patterson (2006), Tsay (1986), and Hinich (1982), respectively.

3. Essentially identical results are obtained either omitting the two nonlinearity tests explicitly
focused on the detection of conditional heteroskedasticity (the McLeod/Li and Engle LM tests) or
using the squared deviations from the median value rather than the squared deviations from the mean
value in the AP statistic.
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