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Abstract. The point of empirical work is commonly to test a very small number of crucial null
hypotheses in a linear multiple regression setting. Endogeneity in one or more model explanatory
variables is well known to invalidate such testing using OLS estimation. But attempting to identify
credibly valid (and usefully strong) instruments for such variables is an enterprise which is arguably
fraught and invariably subject to (often justified) criticism. As a modeling step prior to such an
attempt at instrument identification, we propose a sensitivity analysis which quantifies the minimum
degree of correlation between these possibly-endogenous explanatory variables and the model errors
which is sufficient to overturn the rejection (or non-rejection) of a particular null hypothesis at, for
example, the 5% level. An application to a classic model in the empirical growth literature illustrates
the practical utility of the technique.
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1. Introduction

No issue in econometrics has evoked as much literature (and angst) over the years as that of the

likely endogeneity of explanatory variables in our regression models. The profession’s main response

– instrumental variables (IV) regression – has ameliorated this concern in some settings, albeit at

the cost of a decrease in estimation precision. In large part, however, the use of IV regression has

simply shifted the focus of attention to the exogeneity of the instruments, spawning a search for

‘clever’ instruments whose exogeneity can be argued – e.g., see Angrist and Krueger (1991) and

Acemoglu, Johnson and Robinson (2001). For evidence that instrument validity is a continuing

concern, see Angrist and Pischke (2010), Keane (2010), Leamer (2010), Murray (2006), Sims (2010)

and Stock (2010). Even more recently, Bazzi and Clemens (2013) have strongly criticized the way

IV is applied in growth regressions. In the present paper we suggest a different approach.

Applied economic analysis almost always culminates in the rejection of (or, occasionally, in the

failure to reject) a very small number of crucial null hypotheses at some nominal level of significance,

usually 5%. For any particular one of these hypothesis tests, this translates into a rejection p-value

of less than or equal to 0.05. The endogeneity issue then becomes: is the reported rejection

of the null hypothesis actually just an artifact of unaccounted for (or improperly accounted for)

endogeneity in the supposedly exogenous explanatory variables?
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But suppose that it was possible to determine that any likely degree of such endogeneity was

insufficient to overturn our small set of key inferences? We could then base our analysis on OLS

regression without having to expend resources (or credibility) on finding plausible instruments or

on worrying about their validity.

Ashley and Parmeter (2015) provides an empirically implementable algorithm for performing

exactly this kind of sensitivity analysis with respect to the validity (exogeneity) of instruments

used in linear GMM regression modeling. Where the algorithm finds that a key hypothesis test

rejection is overturned by very small amounts of correlation between the instruments and the

(unobserved) model errors, this inference is deemed ‘fragile.’ In contrast, where it is found that

quite substantial levels of instrument-error correlation – e.g., in excess of 0.50 in magnitude – are

necessary in order to overturn this hypothesis test rejection, then this inference is deemed ’robust.’1

Clearly, inference with respect to some null hypotheses may be fragile whereas others are robust,

even within the same regression model.

Here we observe that OLS regression is equivalent to letting regressors act as instruments for

themselves and apply the Ashley/Parmeter algorithm to the underlying model estimated via OLS.

As an illustrative example, in the next section we analyze the impact of explanatory variable endo-

geneity on the inferential conclusions obtained in Mankiw, Romer and Weil (1992), a foundational

paper in the economic growth literature an area that is routinely criticized for endogeneity.

2. A Sensitivity Analysis for Exogeneity

2.1. Estimation/Inference in the Presence of Unaddressed Endogeneity.

Consider the standard linear model, with the ‘structural equation’

(1) Y1 = Y2α+W1β + ε,

where Y2 is an n×m matrix of (potentially) endogenous variables, W1 is an n×k matrix of variables

whose exogeneity is not in question, α and β are m×1 and k×1 vectors of coefficients, respectively,

and ε is the structural error. For the present purpose we do not assume the presence of additional

(instrumental) variables to correct for the endogeneity of Y2.
2

Accordingly, the moment conditions assumed here are:

(2)
E [Y ′2iεi] = 0

E [W ′1iεi] = 0

The first of the two conditions in Equation 2 incorporates the assumed exogeneity of the m poten-

tially endogenous variables in Y2; the second condition reflects the assumption that the remaining

1Where, as is common, the validity of multiple instruments is in question, the algorithm also provides a sensible
indication as to which of the instruments are the source of any fragility found. R code implementing the algorithm
is available from the authors.
2As noted above, see Ashley and Parmeter (2015) for a related treatment explicitly allowing the use of (possibly
flawed) instruments in 2SLS/GMM estimation; here the focus is on OLS estimation in the absence of credibly valid
instruments.
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k variables are clearly exogenous. Thus, Y2 and W1 are defined in such a way that we need only

concern ourselves with violations of exogeneity for the m variables in Y2.

Letting γ = [α′ β′]′ and X = [Y2 W1], the structural equation [1] can be written more compactly

as:

(3) Y1 = Xγ + ε.

The OLS estimator of γ is thus:

(4) γ̂OLS = (X ′X)−1X ′Y1.

This estimator is consistent, asymptotically efficient and asymptotically normal under the standard

assumptions, including (at least asymptotic) exogeneity of all the regressors X.3

When some or all of the variables in X are not exogenous, then

(5) E
[
X ′iεi

]
= nΣXε 6= 0.

The factor n is introduced here so that ΣXε can be interpreted as the population covariance vector

between the structural error ε and the g+k supposedly exogenous variables; ΣXε can thus sensibly

be referred to as “the exogeneity flaw covariance vector.”

For a given value of the exogeneity flaw covariance vector, then it is easy to show that the

modified estimator of γ,

(6) γ̃ = (X ′X)−1
(
X ′Y1 − nΣXε

)
.

is now consistent, asymptotically normal, and asymptotically efficient and that (conditional on the

‘flaw’ vector, ΣXε) γ̃ has asymptotic sampling distribution,

(7)
√
n
(
γ̃ − γ − E−1XXΣXε

)
∼ N

(
0, σ2εE

−1
XX

)
,

where E−1XX = plim n−1(X ′X)−1. Thus, obtaining an asymptotically valid p-value at which any

particular null hypothesis regarding γ could be rejected would be straightforward if ΣXε were

known.4

2.2. Quantifying the Sensitivity of Inference to Endogeneity in Y2.

Suppose that a particular null hypothesis regarding γ can be rejected – using γ̂OLS and its

asymptotic sampling distribution, under the assumption that all of the variables in Y2 are exogenous

– at, say, the 5% level.5 This is equivalent to saying that the rejection p-value for this null hypothesis

3These standard assumptions also include that of a homoscedastic and non-autocorrelated error term, a correct
specification of the conditional mean of Y1, and full rank of the covariate matrix X.
4Note that our sensitivity analysis remains squarely within the usual (asymptotic) inference framework for
OLS/2SLS/GMM estimation and inference; see Dufour (2003) with regard to finite-sample alternatives.
5The analysis would be essentially identical for a rejection at the 1% (or any other) level: the description in this
section is made definite for the 5% level solely to enhance the clarity of the exposition. Similarly, the procedure
described below can be readily modified to instead analyze the case where the null hypothesis is not rejected at the
5% level and the issue is whether this failure to reject is due to a flaw in the exogeneity of one of the g variables in
question.
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is less than 0.05 using the asymptotic sampling distribution of γ̃ given in Equation 7 with the

exogeneity flaw covariance vector (ΣXε) set equal to zero.

The key issue is how sensitive this 5% rejection of the null hypothesis is to values of ΣXε which are

non-zero, but “plausible.” It is straightforward to re-calculate this rejection p-value for alternative

values of ΣXε, but difficult to have any intuition as to how large such a covariance is likely. In

contrast, one might well have some intuition as to how large plausible values of the components of

the concomitant correlation vector are likely to be. Thus, the crucial issue in a useful sensitivity

analysis is to numerically characterize this rejection p-value as a function of the first m of these

correlations, which are considered to be possibly non-zero.

Converting the covariance vector ΣXε into the corresponding correlation vector merely involves

dividing each of its components by the square toot of the product of the variance of ε and the

variance of the explanatory variable corresponding to this ΣXε component. Since the columns

of X = [Y2 W1] are observed, it is straightforward to consistently estimate the variance of the

corresponding m explanatory variables (Y2) considered to be possibly endogenous. The model

errors, ε, in contrast, are not observed. But the variance of ε can still be consistently estimated

from the fitting errors implied by any posited value for ΣXε.

The sensitivity analysis consequently proceeds by drawing values of the first m (possibly non-

zero) components of the exogeneity flaw covariance vector (ΣXε) at random and, conditional on

this vector, calculating both the implied values for the concomitant m correlations (between the

components of Y2 and ε) and the implied rejection p-value for the null hypothesis. Repeating this

random drawing a large number of times – denoted Mrep below – one can then numerically invert

the relationship to delineate the set of correlations between Y2 and ε for which the null hypothesis

rejection p-value is no longer less than 0.05. This set is called the “No Longer Rejecting” (or

“NLR”) set below.6

Interest then centers on how large such a correlation needs to be in order to overturn the inference

of interest; this is typically quantified by the length of the shortest m-vector from the origin (where

all m variables are actually exogenous) to this NLR set – i.e., by the length of the minimal-length

ray to the “No Longer Rejecting” set. This minimal-length vector is denoted rmin below. Clearly,

the length of rmin lies between zero and one, with a value close to zero indicating that this particular

inference is fragile with respect to failures of the exogeneity assumptions, whereas a value of the

length of rmin which is large (relative to what one might expect to be the case) indicates that this

inference is robust in this regard.7

6Ashley and Parmeter (2015) describes a algorithm for calculating this NLR set in detail, for the more general case
where a sensitivity analysis with respect to instrument invalidity is being done in the context of linear GMM/IV
regression. This algorithm is implemented in R code (available from the authors) and as a Stata batch file (in
preparation), but our approach is easily implemented in any matrix-oriented computer language.
7Our code uses the Euclidean norm, the square root of the sum of the squares of the m components of the ray to the
NLR, as its length measure. While obviously not the only possible choice, this norm emphasizes the importance of
the ray components which are largest in magnitude, which likely contributes to descriptive clarity.
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Because one is sometimes able to infer the sign of a component of ΣXε – as in the case where

endogeneity is induced by measurement error – the signs on the components of this minimum-

length ray from the origin to the NLR set can be very informative also. And, more generally,

the absolute and relative sizes of the m components of rmin point at which of the m explanatory

variable exogeneity assumptions are most crucial to the validity of the inference result.

A word of discussion on how to interpret rmin in applied work. Applied econometrics is inherently

a combination of objective analysis and judgement. For example, frequentist inferential analysis

produces a rejection p-value for a particular null hypothesis, based on an application to the data

of a specific statistical model; such a result is fundamentally objective. In contrast, the decision as

to how to interpret a p-value of, for example, 0.04 or 0.06 necessarily involves some judgment on

the part of the analyst. Analogously, the sensitivity analysis proposed here produces an objective,

replicable result – e.g., a computed value for rmin – which can be easily and clearly communicated

to others. But again the interpretation of this result requires a degree of judgement on the analyst’s

part: Where rmin is notably less than 0.10 it would seem reasonable to conclude that this particular

IV inference is fragile with respect to possible instrument flaws. In contrast, if rmin exceeds 0.70,

say, then it is very sensible to conclude that this IV inference is robust. And – analogous to a null

hypothesis rejection p-value of, for example 0.07 – an intermediate rmin value is indicating that the

sensitivity analysis is not giving a clear result, but that a degree of caution is in order.

3. Illustration of the Method

Exogeneity is a prime concern in various applied economic milieus. However, it is an especially

crucial issue in the applied economic growth literature. The search for valid instruments in this

context has resulted in a cottage industry of papers. This literature was recently taken to task by

Bazzi and Clemens (2013) for routinely testing individual growth determinants one at a time, a

practice which virtually guarantees the production of distorted inferences.

Relatedly, Durlauf, Johnson and Temple (2005, pg. 118) note:

“... the belief that it is easy to identify valid instrumental variables in the growth

context is deeply mistaken. We regard many applications of instrumental variable

procedures in the empirical growth literature to be undermined by the failure to

address properly the question of whether these instruments are valid i.e., whether

they may be plausibly argued to be uncorrelated with the error term in a growth

regression. . . . Not enough is currently known about the consequences of “small”

departures from validity, but it is certainly possible to envisage circumstances under

which ordinary least squares would be preferable to instrumental variables . . . ”

Clearly, if one could demonstrate that key inferential conclusions were robust to potential endo-

geneity, then the need for valid instruments would be mitigated.

The sensitivity analysis described in the previous section is applied here to the exogeneity as-

sumptions made by Mankiw, Romer, and Weil (1992) – ‘MRW’ below – in their seminal work

examining the role of human capital accumulation in determining a country’s growth rate. The
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MRW study is foundational in the empirical growth literature, so an assessment of the validity of

its inferential results is still economically relevant. Their model was chosen for illustrative use here,

however, because MRW use no instruments at all: their parameter estimates and hypothesis test

inferences are all obtained using OLS estimation, based on a set of exogeneity assumptions.8

The main point of the MRW paper is to test an ‘augmented Solow model’ in which the logarithm

of per capita output in a country is taken to depend on the rate of human capital formation

(‘ln(SCHOOL)’), on the rate of investment in physical capital (‘ln(I/GDP )’), on the population

growth rate (‘n’), and on the growth rate in the level of technology (‘g’). MRW aggregate n, g,

and the depreciation rate (‘δ’) into a single regressor, ‘ln(n+ g + δ)’, in their regression model.9

MRW assume that all three of these explanatory variables – ln(SCHOOL), ln(I/GDP ), and

ln(n+ g + δ) – are exogenous and obtain the OLS estimates:

(8)

ln(GDP/L)i = 6.84

(1.17)

+ 0.65 ln(SCHOOL)i

(0.07)

+ 0.69 ln(I/GDP )i

(0.13)

− 1.75 ln(n+ g + δ)i

(0.41)

+εi,

with R
2

= 0.779 and s2 = 0.258 using the data on the 98 countries in their full (‘Non-oil’) sample.

MRW’s essential point is that the null hypothesis Ho :βschool = 0 can be easily rejected, implying

that the standard Solow model should be augmented so as to account for changes in human capital.

They also test a second null hypothesis, Ho :βschool + βI/GDP + βngδ = 1, which corresponds to

constant returns to scale technology. The p-value for this linear restriction is 0.388, so this null

hypothesis cannot be rejected using their model.10

Because Equation 8 is estimated using OLS, however, these inference results are potentially

invalid unless all three explanatory variables in this equation are actually exogenous. This set of

exogeneity assumptions is not directly testable because εi is not observable; but the sensitivity of

these two MRW inference results to potential flaws in these exogeneity assumptions can be easily

assessed using the sensitivity analysis procedure proposed here. More specifically, this analysis

quantifies how large the correlations between [ln(SCHOOL)i, ln(I/GDP )i, ln(n+ g+ δ)i] and the

model error (εi) would need to be in order to overturn either of these two MRW inference results

at the 5% level.

8As a referee rightly notes, if the model is misspecified, e.g., by failing to capture nonlinearities that exist between
growth and capital (either human or physical), then the sensitivity analysis results will be distorted by the resulting
inconsistency in the parameter estimation for the original model. That is, we need to assume that the model is
correctly specified in order for a sensitivity analysis based on it to work properly. Omitted variables are less of
a concern because in this case it is precisely their omission that potentially would invalidate the OLS exogeneity
assumption and could lead to invalid inference.
9The variable ‘ln(SCHOOL)’ is the average percentage of the working-age population in secondary school during
the period 1960-1985; thus, MRW are ignoring other investments in human capital – e.g., health. The difficulties in
measuring investment in human capital are described in their Section IIB. Also, the sampling variation in ln(n+g+δ)
is entirely due to variation in population growth rates, as g + δ is set to a constant value of 0.05 in the MRW study.
10In a natural notation, βschool denotes the coefficient on ln(SCHOOL)i, etc. MRW obtain other results in addition,
but these are their most important inferences.
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Table 1 presents the sensitivity analysis results, using Mrep = 25, 000 repetitions, with respect

to the null hypothesis Ho :βschool = 0 for four different scenarios: first allowing for possible exo-

geneity flaws in each of the three explanatory variables separately, and finally allowing for possible

flaws in both of the two explanatory variables, ln(SCHOOL)i and ln(I/GDP )i, whose potential

endogeneity appears to matter.11

The component (or components) of rmin, the vector corresponding to a ray from the origin to

the closest point in the ‘No Longer Rejecting’ set for Ho:βschool = 0.0 are given in the first row of

each column of Table 1.

Table 1. Sensitivity Analysis Results on Ho: βschool = 0.0 in the Mankiw, Romer
and Weil (1992) Model, Equation 8).

Variable ln(n+ g + δ) ln I/GDP ln SCHOOL ln SCHOOL & ln I/GDP

rmin vector 1.000 -0.536 0.425 (0.188,−0.298)
rmin length 1.000 0.536 0.425 0.353

Interpreting these results:

(1) The values calculated for the length of rmin in Table 1 range from 0.353 all the way up to

1.000; evidently, quite substantial correlations between MRW’s explanatory variables and

the model error term are necessary in order to reverse their rejection of Ho :βschool = 0 at the

5% level. We conclude that this MRW inference with regard to the human capital variable

– ln(SCHOOL)i – is quite robust to flaws in the exogeneity assumptions with regard to to

all three explanatory variables: ln(SCHOOL)i, ln(I/GDP )i, and ln(n+ g + δ)i.

(2) The result that rmin equals one for the sensitivity analysis allowing for correlation between

ln(n+ g+ δ)i and the model errors, εi, indicates that this null hypothesis is still rejected at

the 5% level for any possible value for this correlation. Thus, this particular MRW inference

result is completely robust with respect to possible non-exogeneity in ln(n+ g + δ)i.

(3) For the m = 2 calculation, analyzing the sensitivity of the Ho :βschool = 0 inference to

possible non-exogeneity in both ln(SCHOOL)i and ln(I/GDP )i simultaneously, the mag-

nitudes of the two components (0.188 and -0.298) corresponding to a ray from the origin to

the ‘No Longer Rejecting’ set are roughly equal. This result suggests that the inference is

equally robust to non-exogeneity in either of these explanatory variables.

(4) Portela, Alessie and Teulings (2010) argue persuasively that the measurement errors with

regard to human capital in data sources based on enrollment rates (e.g. Barro and Lee;

2010) are likely to be negatively correlated with the actual value of human capital. MRW

use an amalgam of secondary school enrollment rates and the fraction of the population that

is of secondary school age to construct their human capital measure, SCHOOLi. It is thus

not unreasonable to assume that the (unobservable) correlation between SCHOOLi and εi

11The m = 3 case can be analyzed also, but it is redundant to report these results, in view of the fact that this MRW
inference result is so highly robust with respect to exogeneity flaws in the ln(n+ g + δ)i variable.
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is not positive. In contrast, our finding that rmin must exceed 0.425 (where the sensitivity

analysis is on non-exogeneity in SCHOOLi alone) indicates that it is only strongly positive

values of the correlation between SCHOOLi and εi which overturn the MRW rejection

of Ho :βschool = 0. This observation further strengthens our conclusion that this MRW

inference is robust to likely non-exogeneity in SCHOOLi.

As noted above, MRW also test the null hypothesis Ho :βschool + βI/GDP + βngδ = 1; this null

hypothesis corresponds to constant-returns-to-scale technology and cannot be rejected at the 5%

level in their OLS regression. The robustness (or fragility) of this result is of intrinsic economic

interest, but it also provides an opportunity to illustrate two additional generic aspects of the

sensitivity analysis procedure proposed here: First, that it is just as easy to do the sensitivity

analysis with respect to a more complex null hypothesis, and second, that one can also analyze the

sensitivity of a ‘failure’ to reject a null hypothesis.

Table 2 displays the corresponding results with regard to the robustness of this second MRW

inference result to flaws in their exogeneity assumptions, again using Mrep = 25, 000 repetitions.

Table 2. Sensitivity Analysis Results on Ho :βschool + βI/GDP + βngδ = 1 in the
Mankiw, Romer and Weil (1992) Model, Equation 8.

Variable ln(n+ g + δ) ln I/GDP lnSCHOOL ln(n+ g + δ) & ln I/GDP
rmin vector -0.109 -0.241 1.000 (−0.236,−0.029)
rmin length 0.109 0.241 1.000 0.239

Note that the MRW failure to reject Ho :βschool+βI/GDP +βngδ = 1 at the 5% level is extremely

robust with regard to possible endogeneity in ln(SCHOOL)i, but not quite so robust with regard

to possible endogeneity in ln(n + g + δ)i or ln(I/GDP )i when each is considered separately. No-

tably, this inference is quite fragile with respect to possible endogeneity in ln(I/GDP )i when the

sensitivity of the p-value for this inference with respect to both ln(n+ g + δ)i and ln(I/GDP )i is

quantified simultaneously.

4. Concluding Remarks

The primary feature which distinguishes econometrics from statistics is its willingness to confront

endogeneity in regression models: where one or more of the explanatory variables in the model are

correlated with the model error term, ε. Typical sources of such endogeneity are simultaneity (where

an explanatory variable is jointly determined with the dependent variable, commonly because both

depend on an omitted explanatory variable) and measurement error (where the observed values

of an explanatory variable are corrupted to some degree by noise, which noise then appears also

in the error term). Since simultaneity and measurement error are endemic problems in economic

regression models – leading to inconsistent parameter estimates – dealing with endogeneity is a

central concern for empirical economists.

This paper proposes a sensitivity analysis for flaws in the exogeneity assumptions of a linear

structural model. Where some inferences are found to be fragile with respect to one or more of
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these exogeneity assumptions, the results of this sensitivity analysis can be used to either temper

the discussion of this subset of one’s inferential conclusions and/or motivate a search for valid

instruments. Where other - or perhaps all - of one’s inference results are found to be robust with

respect to violations of the exogeneity assumptions, this sensitivity analysis can be used to preclude

a search for (potentially problematic) instruments altogether.
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