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ESTIMATING THE MEAN OF A NORMALLY DISTRIBUTED RANDOM VARIABLE 57

CHAPTER 3

They look rather similar, but the MSE( i) and the var(ji) are identical only for an unbiased estimator:

dispersion of f around true value of . = E[(i — »)’] (3.22)

MSE(ji)
dispersion of (i around its expected value = E[(& — E[@])’]

var(ji)

There is, however, a simple relationship between the MSE(ji.) and the var(ji.}): the mean square
error of any estimator equals its sampling variance plus the square of its bias. We will use this result
in a number of contexts below, so it is worth proving in general —i.e., not just for the estimator of the

population mean of a normally distributed variable. Let (i be an estimator of a parameter i, then:®
MSE() = E[( - w’] Ay 2
+[ bias(A)

_ E[(;l — B[] + E[3] - u)z]

var(i3) + [bias(i)}’
Thus, because the expected loss of ji (due to the errors j. makes in estimating p.) i proportional to

MSE([i) under a squared error loss function, small sampling variance and small squared bias in L

are both good in the sense of yielding lower expected losses.
What, then, is the optimal (“best”) estimator under the squared error loss function assumption?

Returning to the simple case of estimating the population mean of a normally distributed variable, suppose
that we assume that the optimal estimator of . is a constant (k)times ji; g = Y and calculate the value of k
which minimizes the expected losses incurred by this estimator. This is the value of k which minimizes:

E[(k7 - u)?] = MSE(T) = var(kY) + [bias (k7)]*
= iPvar(Y) + [E[KY] - |.L]2
_ (% P (3-24)
=2 (5%) + -
_ (e 122
=k ( N) +[k— 1w
Thus, &~ - the optimal value of k — satisfies

dMSE (k¥ 2
o = MSEGT) _ e (%) + 20k — 1p?

dk (3-25)

0.2
=2 =+ ) —2p?
(N*“) .

is added and subtracted because the sampling variance of [i is the expected value

® Note that in the following derivation E[fi]
— . is a fixed (not a random) quantity.

of (ii — E[])%. Also note that the bias () = E[A]
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-1.96 1.96

Figure 4-1  The 2%% Critical Poirt of the Unit Normal Distribution

This implies that
< Yow

< <
—Zus = = < Zors
. o
V N

Multiplying both sides of each of these incqualities by /o2 /N yields

with probability .95 (4-6)

7 - e
~%ps"S T < 2ipsy/7; with probability 95 @7

And subtracting ¥ from bath sides of each inequality yields
- ) o - o2 . -
—¥ - s oSk s =Y + 28 +  With probability .95 (4-8)

Finally, multiplying both sides of cach inequality by —1 (and therefore flipping the sense of
the inequalities from “ <" to * > ™) yields a 95% confidence interval for .

— . ol - . [

P+ s\ 2 b 2 Y — Zoa5\f 5 With probability .95 (4-9)
or

- o2 - a?

Y+ 196 N >p>¥Y—196 N with probability .95 {(4-10)

Becausc o2 is known, realizations of the endpoints of this interval can be estimated from the sample
data — i.¢., [rom the observed sample mean, §.

This estimated confidence interval conveys very useful information as to how precisely Y estimates
l.. Note that this confidence interval docs not indicate that there is any uncertainty in the value of u: p’s
value is unknown but fixed. What the interval does do is quantify how the sampling variability in ¥
impacts our ability to “know™  using a single realization of ¥. Imagine drawing 10,000 independent
samples of ¥y ... ¥, yielding 10,000 realizations of ¥ and hence 10,000 ditferent 95% confidence
intervals for . We can expect that around 9,500 of these intervals will overlap the true value of . and
that about 500 of them will not.
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4.5 USING $* TO ESTIMATE o [AND INTRODUCING
THE CHI-SQUARED DISTRIBUTION]

The population variance (o) is never known in practical circumstances, so the results on confidence
intervals and hypothesis testing given above arc not yct complete. To make these results complete,
o~ must be estimaled and the fact (hat this estimator is a random variable with its own sampling
distribution must be explicitly taken into account. In particular, it will be shown explicitly in the next
section that it suffices to find an estimator of ¢ which is distributed as a chi-squared variate and is
independent of ¥; identifying and anaiyzin% such an estimator is the topic of this section.

If p were known, finding an estimater of ¢ and obtaining its sampling distribution would be quite
easy. In that case, the natural choice for an estimator of o’ would be the sample variance,

1 N
6’2 “N-Z(Y,'—[L)Z (4'18)

i=1

Note that (using the Linearity Property and the definition of ¢?) it is simple (o show that &7 is
unbiased:

E[6*] = E

LI ) S| ) Y1, )
SoRi—w| = Y gE-w] = Yoget =0t @)
i=i i=1

i=1

This estimator of o2 also has a simple sarpling distribution: N&2/g? is chi-squared with N
degrees of freedom. The chi-squared distribution is most conveniently defined as follows:

Chi-Squared Distribution

Z; ~ NUE@, 1] for i=1l..m,

then (4-20)
0=>7~x(m

i=1

“Qis chi-squared with m degrees of freedom”

It

So any random variable which can be written as the sum of the squares of m independently
distributed unit normals is distributed x? with m degrees of freedorm,
Multiplying &* by N and dividing by o* yields

Net N 1 E Nl LS
== (ﬁ;(ﬁ -~ u)z) = ;;(Yf —py = Z, (*T) ~ (N @21
because the (Y; — w)/o are independent unit normal variables when ¥; is distributed NIID [, a*l

But . is not kno_wn, 50 ¢ is not usable as an estimator of o2, Instead, it is necessary to replace p
by an estimator (Y) yielding the unbiased estimator

N
$2 = ﬁzl (v; - 7)° (4-22)

It is by no means obvious that 52 is unbiased, This and several additional key results on $% are proven
in the remainder of this section using the following intermediate results:
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E[sY] = ﬁzzl[E[Yf] - 28[rf)+ E[7]|

i
i
|-
=
=,
+
ql\-‘
|
%Y
P
-5:(‘-3
._I..
z|],
p
_I_
—
-FM
+
=| 4.
—

(4-26)

I
by
.I_. p—
=
Rk
|
[+
=],
+
Z15%

T;.

2
_(N—2+1)%] = o?

I
ZI'“
.Mz

-1
Thus, using the factor 1/(N—1) instead of 1/N in the definition of 52 makes it an unbiased estimator
of &”. Referring back to the derivation earlier in this section showing that E[¢*] = ¢?, it is plain
that the factor 1/(N—1) is needed in the definition of 5% because the observable estimator ¥ is being
substituted for the unknown population mean . What is going on here is that the observed
deviations y, — ¥... yy — ¥ are (on average) a bit smaller in magnitude because these deviations are
being calculated from the same y; ... yy data used in computing 3; therefore, the sum of the squared
deviations in the estimator §% must be “blown up” a bit by the 1/(N~1) factor to compensate.

In order to derive confidence intervals and hypothesis tests for w when o is unknown, it is
necessary to show that (N—1) S%o? is distributed x*(N—1) independently from ¥. The required
mdependence is easy to show (and is derived later in this section), but the derivation that {(N—1)
5?/a” is distributed %*(N—1) requires matrix algebra which is beyond the scope of this book. 8
Con%equently, this result is instead motivated here by showing that (N—1) §%¢” is approximately
distributed x%(N) for large N; this turns out to be quite easy.

First, multiply the expression for § by N—1 and divide it by o to yield

N-1)§*  N-1 N 1 N Y =T\
( 02) T o2 (N lz ) Z-CTY_Y Z( o ) @2

i=1 i=1

Now nole that (Y - 7) /o is normalty distributed because it is the weighted sum of (wo normally
distributed variables; and it has mean zero because E [Yjand E [_] ¥| both equal p.. But (Y - Y) is not
a unit normal because — referring to the “intermediate results” box — its variance is 1 — - rather than
one. For sufficiently large N, however, the variance of (Y,- -Y ) /o is arbitrarily close to one. Thus,
for large N, {¥; — Y} /o is essentially a unit normal variable,

Again using the intermediate results of Equation 4-23, the covariance of (¥; — ¥) /o with (¥; = T) /o
is —lNfori # j—ie., deviations from the sample mean are somewhat negatively correlated with each
other. This negative correlation arises because both deviations are using the same Y, which is calculated
using both ¥; and ¥;. Consequently, (¥; —¥)/o and (¥; —¥)/o cannot be independent of one
another. But this correlation disappears as N grows, so that the {¥; — ¥) /o terms in the expression
for (N~1) $%a? become arbitrari %rclosc to being independent as N becomes arbitrarily large. Thus, for
sufficiendy large N, (N—1)5%c” becomes arbitrarily close to being the sum of the squares of N
independently distributed unit normals - i.c.. forlarge N, (N — 1) §%/2 is approximately distributed x*(V).

Remarkably — as noted above — a more sophisticaled derivation shows that (N—1) §%/o? is exactly
distributed x“(¥V—1). As N becomes large, of course, the distinction between these two results
becomes negligible.

The estimator 52 has one other crucial property: it is distributed independently from ¥. This follows
from the result (quoted in Equation 4-23) that the cov (¥; — ¥, ¥) is zero for all {, which implies that

8 See Johnston, 1., 1984, Econometric Methods, MeGraw-Hill: New York, pp. 165-7 and 180-2, for a proof.
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the sample mean of the observations is uncorrflated with each individual observation’s deviation
from this sample mean. Both of these randomariables are normally distributed; consequently, their
uncorrelatedness implies that they arc ing€pendent — ie., completely unrelated — even though
(because both terms in the covariance invgfve ¥) they look like they ought to be related. Because Yis
unrelated to each of the deviations ¥,...,Yx — ¥, it must be unrelated to their squared
values, and to the sum of their squared values, and (hencc) o S2.

It took some effort, but now we have an estimator of ¢ which is distributed as a chi-squared
variable independently from our estimator of . These results are used in the next qectmn to obtain
confidence intervals and hypothesis tests for p when, as is typically the case, o” is unknown.

4.6 INFERENCE RESULTS ON . WHEN o? IS UNKNOWN
{AND INTRODUCING THE STUDENT'S t DISTRIBUTION]

In summary, we have now seen thal assumption that the ¥; are distributed NIID [j, o?] implies that
Y-p

~ N[0, 1] (4-28)
2
N
and that
N-1) §? 5
L_E'Z)_g ~ o (N-1) independently from ¥ (4-29)

As shown in earlier sections of this chapter, the unit normal statistic in Equauon 4-23 can be used to
construct a confidence interval for i or 1o test a null hypothesis about p when o is given. But those
results are not very useful when o’ is unknown, because the resulling confidence interval endpoints
and hypothesis testing stalistics depend explicitly on o*. Now that we have an unbiased estimator of
o, however, it is natural to consider simply substituting §% for o and making the approximation

Y—p Y—p

S’Z - ol
N N

But this new random variable is no longer a unit normal because the estimator §% now in its
denominator is itself a random variable. Consequently, one might expect the density function for
this new random variable to have thicker tails than a unit normal - particularly for small samples,
where §2 will be a fairly “noisy” estimate of o= It is impossible to proceed, however, without
knowing the tail areas for the distribution of this new random variable.

Fortunately, because 5 is a chi-squared variable independent of Y, this new statistic has a simple
and well-known distribution:

(4-30)

Student’s ¢ Distribution
If
Z ~ N(©, Nand @ ~ x*(df) independently from Z
then
T =2 < (4-31)
2
df
and
“T is distributed as Student’s ¢ with df degrees of freedom”
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This sct of assumptions is very similar to the assumption — that ¥; is distributed NIID[ ., o] -
made regarding Y; in Chapter 3, so the discussion in this section will in some ways be quitc similar.
These assumptions with regard to the U; are crucial to the derivation, in Chapter 6, of the
properties of the least squares estimators of the model parameters o and B and to the construction,
in Chapler 7, of hypothesis tests and confidence intervals for these parameters.” Moreover,
because one portion or another of these assumptions about U, is frequently violated by real
economic data, we will revisit these assumptions in Chapters 10 through 13, when we deal with
the practical issues of how (o recognize and cope with such violations.® The task of the present
section, in contrast, is only to cxpand a bit on what these assumptions with regard to U; imply.

As in Chapter 3, the normality assumption on U; is motivated in large part by appealing to the
Central Limit Theorem (und its cousins), which imply that roughly equally-weighted sums of large
ers of random variables that are not too far from being identically and independently
will be approximately normally distributed. Recalling that U; guantifies the impact
on Y; of @l of the explanalory variables which have been omitted from the model, it is often
reasonable to- think of {; as being such a weighted sum of a large number of more or less
independent influences on ¥;. Alternatively, as you discovered in working Exercise 2-40, when it is
more reasonable to think of U/; as being the product of a large number of such influences, then the
distribution of its logarithm will be approximately normal. In such cases, these considerations
suggest that reframing the model in terms of the logarithm of the original dependent variable is more
likely to yield a model error werm which is at lcast roughly normat. Either way, the actual validity of
this normality assumption is essentially an cmpirical issue. For exampie, we will see in Chapter 10
that a histogram of the observed model fitting errors (... ul}) will typically shed substantial light
on the plausibility of this assumption for a particular data set. (These model fitting errors are
obtained and discussed later in this chapter; in Chapter 10 they are shown to be reasonable estimates
of the model errors, Uy ... Uy, for large samples.)

We saw in Chapter 2 that the density function for a normally distributed random variable is
completely determined by its mean and its variance. Consequently, the assumption that the {/; are
identicalty distributed reduces in this case to an assumption that both the mean and variance of U; arc
the same for every observation —in other words, for all values of i. This constant mean can be taken to
be (0 al no loss of generality because any such mean value that {/; might otherwise have had can be
incorporated into the parameter o of the Bivariate Regression Model. (Any sample variation in the
mean of U; which we are unable to model is considered to simply be part of U;'s random variation.) In
contrast, any variation in the mean of U; which can be modeled - as being due to sample variation inan
observable variable. z;, say — implies that the {supposedly constant) intercept parameter o is really a
function of z;; in that case, this variation should be modeled explicitly by including z; in the model as an
additional explanatory variable, This leads to the Multiple Regression Model taken up in Chapter 9.

Similarly, the assumption that the U; are identically distributed also implies that the population
variance of {/; — here denoted o ~ is the same for all N observations. Model errors which all have the
same variance are said o be “homoscedastic.” Contrastingly, in #n obvious notation, the failure of this
assumption is called “heteroscedasticity,” in which case the variance of U; varies with i; in other words,
var(U;} = o?. By observing where this assumption is used in the next few chapters, it will become
apparent that the failure of the homoscedasticity assumption is consequential for both the efficiency of
least squares parameter estimation and for the validity of the usual statistical machinery we use for
constructing hypothesis tests and confidence intervals on oc and 8. Moreover — as we already saw in the

?Far expositional simplicity, attention in Chapter 6 and 7 will mainly focus on the parameter B.

¥ At that point we will necd to confront an unfortunate dissimilarity between the assumptions on ¥; made in Chapter 3 and the
assumptions on the model errers (U)) in the Bivariate Regression Model made here: sample realizations of ¥; are directly
observable, whereas sample realizations of U, are not. In fact, as the “parallel universes” example shows, we would need to
know the values of o and B in order to use our sample data {y; and x;) to calculate (observe) w;, a sample realization of U,
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LI5S

Thus, our object is to g Bg s0 as to minimize what is called the “sum of squared

fitting errors” functiot,

SSE( guese guess i i( — Gluess _ BguessJCi)Z (5_22)

i=]1 i=]

The function SSE@**, **“**) clearly depends not only on &&= and B****" but also on the sample

data, y| ... yyand x,... xx. This dependence on the sample data is suppressed in the notation so as
to focus on how sum of the squared fitting errors depends on the parameter estimates
~ SUEss A BUEES 173

a and B~ .

= - . = H P
Suppose that we fix the value of B°  at some given value, Bgue *, and examine how SSE

(as=s, Bgms) depends on &8, If &8"°% is very small, then &2"% - Bgum — the height of the
fitted line — will lie far below all of the y; values. This implies that & ... 4} will all be positive and
large, leading to a large value for SSE(GE""™, Bﬁ“‘“). Similarly, if &8"* ig very 1arge then the fitted
line &5 4 Bguc x; will lie far above all of the y; values, implying that uf*..

negative, and again leading to a large value for SSE(&E", Bs"N
* BUESS
&

... ult will all be very
). Somewhere in between — where
is such that the fitted line is reasonably close to the dots in the scatterplot — some of wiit,.. i
values will be negative, some will be positive, and most will be small in magnitude, leading to a
relatively small value for SSE(@#*, B2, Thus, a plot of SSE(a8"s, 2"
look like Figure 5-8:

Y versus a8 will

SS5E SSE (&guess 6 guess )
\ -

Gouess

quess

Figure 5-8  Sum of Squared Fitting Errors with Fixed

~ i » . S BUEsS A DUERE
The least squares value for & based on this particular value for 8% is the value of &“* such that
puess

~puess
SSE(aE*, 8,
W glass A EUESS . . ~ PUBSE , ‘s
(&8, B, ) curve is negative for values of &% smaller than this and positive for values of

) is smallest. It is apparent from this diagram that the slope of the SSE

"2 1t is preferable to cull this function “the sum of squared fitting errors” so as 1o keep in mind that this function is summing up
the observed squared fitting errors rather than squared realizations of the model errors, Uy ... &y, Thus, “SSFE” would he
better notation for this function, but “SSE" is the standard nomenclature,
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&8 larger than this. Therefore we can characterize the least squares value for & as that valoe of
&5"% at which the derivative of SSE (&5, Bgle *y with respect to &5°% is zero.

Similarly, il we (ix the value of &% at some particular value &5"* and examine how SSE
(@8 3%y depends on 3% we find that the value of SSE(&E"*, g5
extreme values of ﬁgum because these lead to fitted lines whose slopes are so extreme that the fitted
line lies near the observed scatter of data only for a few values of the explanatory variable. Thus, a
plot of SSE(a2=%, %) versus B* will look like Figurc 5-9:

) will be large for

SSE SSE (&\guess , ﬁguess)

\

ﬁguess

Figure 5-9  Sum of Squarec Fitting Errors with &% Fixed

Consequently, we can similarly characterize the least qquarcs value for |3 as that value of Bguess

which the derivative of SSE(G5"*, B¥™y with respect to [3 * is zero.
Thus, the least squares estimates of o and B must jointly satisty the conditions

_qu!“ !\JMSS)

\‘oo\d
ve - 2SsE U

N =~ BUCHS
E(C,Lgucss7 |3 )

i Buess = 0
A 9otss _ (5-23}
? A OSSE(e*, g™y
C.)Bguesﬁ .

As noted earlier in this section, these estimates are customarily called the “ordinary least squares”
cstimates of o and B, or &7, and Bo]s’ where the tenm “ordinary™ merely refers to the fact that the
Bivariate Regression Model is linear in the unknown parameters, e and B.'?

The asterisks on &/, and [3“!5 are used to notationally reflect the fact that these estimates are
fixed numbers determined by the observed sample data: v, ... vy and x, ... xy. Later on (in

'3 This terminology using the word “ordinary” is mentioned and used here only becavse it is the standard nomenclature, In
fuct, to unclutter the notation, the “uls” subscript will be dropped altogether in Chapters 6 through 8, where only least squares
estimators are considered.
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Figure 5-14  Scatterplot of the Logarithrn of Weekly Income versus the College Graduarion Dumnmy
Variabie

Note that the apparent variance ol the model error term is now substantially more similar for the two
values of collegegrad, than in the previous scatterplots.'®

Note also, however, that the case for the proposition that expected earnings are higher for college
graduates now seems a bit less compelling. Comparing these two scatterplots in this way is
misleading, however, because the slope in the previous diagram corresponds to the expected
increment in earnings (PTERNWA) for having graduated from college whereas the slope in this
diagram corresponds to the expected increment in the logarithm of earnings for having graduated
from college.

Estimating the parameters oy and 8, in the model for LOGEARN; using the formulas for the least
squares estimates derived earlier in this chapter yields

S0 - e
ollegegrad; — collegegrad)(logearn; — logear:
i§| (collegegrac collegegra }( o g n) - 0.?Z-§5)

50
Y- (collegegrad; — c'o!.leg.egmd)2

j==

and

logearn — 873 collegegrad = 6.022 (5-46)

19 Using the F test given at the end of Chupter 2, which assumes that each sample is normally identically and independently
distributed, the p-value for rejecting the null hypothesis of equal variances is .57, so this null hypathesis cannot be rejected.
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. N
In Chapter 6 we found that the least squares estimator, B = % w}"@s distributed

i==]
B~N|p ———— (7-3)

under these assumptions.
Clearly, our uncertainty as the actual value of B depends on the sampling variance of B, or

N

ot/ 5 (x — %)2. For expositional clarity it is initially assumed here that o2, the variance of the
i=1

model errors (U] ... Up), is given. Once confidence intervals and hypothesis tests for B are obtained

for this special case, the results are extended to where, as is always the case in practice, ¢> must be

estimated from the sample data.

The basic ideas underlying the development of practical confidence intervals and hypothesis tests
for $ in the Bivariate Regression Model are essentially identical to those used in Chapter 4 to obtain
analogous results for p where ¥; ~ NITD(p, 0”*). Consequently, the exposition given here begins (as
it did in Chapter 4) by using the sampling distribution of the relevant estimator to obtain a statistic
with a known distribution,

7.2 A STATISTIC FOR 3 WITH A KNOWN DISTRIBUTION

Here, the relevant estimator, of course, is B. The expression for its sampling distribution given
above proved very useful in Chapter 6 for deriving the properties of §, but it is more convenient
to work with the unit normal distribution for inference purposes. Subtracting the mean of B and
dividing by the square root of its variance standardizes 3 to zero mean and unit variance, yielding

~ N[0,1) (7-4)

7.3 A 95% CONFIDENCE INTERVAL FOR [} WITH o* GIVEN

Recall from Chapter 2 that by definition, a unit normal variate exceeds its 242% critical point
(245, Or 1.96) with probability .025 and is also less than its 972% critical point (25,5, or —1.96)
with probability 1 — 975 or .025. Thus, a unit normal variate lies in between these two critical points
with probability .95, as illustrated in Figure 7-2.

Therefore, with probability .95,

(7-5)
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Ezon

ared = .025
area = 025

15 2 a5 z
=1.96 1.96

Figure 7-2  Unit Normal Density Function wittr Critical Poirts fliustrated

or, equivalently,

It follows that, also with probability .95,
N

-1.96 \ a?/> (% - %
J=1

~B 196, [a2/> (- ®)°

B+1.96 U'Z/i(xj—f)z >
V7

so that the interval

N
B—196,62/> (x B+ 196,02/ (x— %’ (7-8)
=

i=l1

contains B with probability .95 —i.e., it is a 95% confidence interval for B. Of course, if any of the
assumptions of the Bivariate Regression Model are invalid — i.e., the x; are not fixed or the U; are not
distributed NTID[0, 2} - then this interval will not in general contain § with probability .95.

The derivation of a 99% confidence interval is essentially identical, only using the %% critical
point, e, or 2.57, instead of z5,,. Clearly, this interval must be wider — by a factor of 2.57/1.96 —
50 as to contain B with the specified higher probability.

Note also, that the unbiasedness of § was necessary in order to standardize B to zero mean in
Section 7.2, and that the derivation given above makes it plain that the width of any confidence
interval lor B based on B is proportional to the square root of the sampling variance of B Indeed, this
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HN=2)

area = ,025
area = 025

Figure 7-4  Student’s sDensity Function with Critical Points lllustrated

with probability .95. Like the unit normal distribution — which it resembles, except for having a
sharper peak and thicker tails — the Student’s ¢ distribution is symmetric around zero; consequently,
15955(N=2) = ~1%,4(N—~2), so that

—tas(N=-2) < G;B < tas(V-2) (7-29)
(/5 Z (x; — %)
i=1

with probability .95. Consequently, also with probability .95,

N N
— 5 (N=2) 52/;@—3)2 <Bp-B < ffhzs(N—ZM/SZ/;(JG—T)z

N
B — £ (N 2)”82/2 i —X) o p < —B + 5N Z
. N . N
B+ £ps(N-2) s2/;(x,-—fc)2 > B> B—rf;u.s(N—Z),/s?/_Z;(xj -3
J= i=

$0 that

(7-30)

N
B=f % G(N-2)y/8/ 3 (5 - %) (7-31)
=1

with probability .95. A sample realization of this confidence interval is thus

N
B =p &+ rf(N=-2) Z G — X (7-32)
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be unknown, because (for example) it is a policy variable (such as a target interest rate) whose value
is still under consideration. In that case, ¥; forecasts conditional on various likely choices for x; often
form whatever rational basis there can be for the analysis of policy. In either case, it is essential to be
able to place error bars around whatever predictions are made.

Each of these topics is now considered in turn.

8.2 QUANTIFYING HOW WELL THE MODEL FITS THE DATA

In view of the fact that the estimates of the parameters o and  in the Bivariate Model are chosen so as
to best fit a straight line to the sample data, it is clearly relevant to quantify how well the resulting
estimated model actually does fit the data. In principle, such a measure will be useful both in assessing
the value of a particular mode] and in comparing one proposed model for the data to another,

The most common goodness-of-fit measure is called R*. This nomenclature derives from the result
{obtained below) that this measure is numerically equal to the square of the sample correlation between
the data on the explanatory and the dependent variables in the Bivariate Regression Model; this
goodness-of-fit measure bears several other, probably more useful, interpretations as well, however.

Onithe other hand, it is fair to say that people pay far too much attention to R*.For one thing, R* tums
out to not be very useful for comparing regression models with differing numbers of explanatory
variables; consequently, we will need to return to this topic in Chapter 9. Beyond that — as will become
apparent below - the interpretation of R” is both subjective and problematic. Still, some form of R is
quoted for almost every estimated regression model. For example, the estimated model for the
application anatyzed in the previous chapters would ordinarily have been expressed

R = 224

logearn; = 2 — 686

6.022 + 0.873 collegegrad; + w,r-lt (8-1)

(.166) ({.234)

Consequently, it is important to understand how R? is calculated and what it does (and doesn’t) mean.

Fundamentally, we seek to model the variation in y; ... ¥y, the realized values of the dependent

variable, across the sample. R? quantifies the proportmn of this sample variation in ¥; that is

““capturcd” by the & + Px; part of the fitted Bivariate Regression Model. This portion of the fitted
odel is an estimate of the mean of ¥;, conditional on the observed value of x;:

Yi = a4+ Px;+ U = E[Vix] + U; (8-2)

ause the presence of the intercept term (o) implies that E|U;] = 0. The sample variation in the
izations y; ... yx thus arises from two sources, corresponding to the two terms on the right-hand
de of this equation. More explicitly, the y; observations vary across the sample because:

The x; vary with i, causing E[Y|x;] = a + Bx; to vary.
‘The U; are random variables, so that ¥; is not actually equal to E[Y;|x].

-athount of sample variation in the y; can be measured by %

SST = sum of squares total = Z ly u(
i= l

ooks like a sample realization of (N—1) times an estimator of the population variance of ¥;. But
isn't, because the ¥; are not identically distributed: E[¥;] = o + Bx; is different for each
ent value of X;, whereas this estimator is taking E[¥;] to be a constant which could reasonably
ted by the estimator Y. SST can still, however, be sensibly used as a descriptive statistic
rizing how unequal o one another the y; ... yy are.

(3 3)



sonGV DY Suteiuatte v g0 E T S50 Y

1=!

(g 0)ass+o+0+ - EW%,&
N

*

181} OS

{ o+ e g+ =1 ()X -

splaté
anoqe UeAIS LSS Jo UOnuydp 2 o3t ?,w: +xd apow psiiy a1 10) uonenba a1
pue snp Sunmnsqns o) = X d — o — Lyey serdun suonenba om) asayTIqQsIy aY L, "0192 o) fenbe

o PUE ,0ng'® 410 01 J00dS01 (A (| __5) BSS JO seanEADap [rrEdQy) EL 01 3310 ut

ssand >

(5-8) ‘ 0 = "}

) 0=x9dN— . ON—£ : . . ¢\

suonenba oy AJsnes 1SnU ¢ puE |0 SI0JeWNSI
sarenbs jsea o eyl ¢ Iandey) woyy AL jSI ‘smy) 998 O] "9A0qE vuamzﬁ $aomos omy 97 JO
yora 0} Supuodsaicd Suo sgyred om) OUT Apeau sytjds ' at Ul UOTEHEA apdures aU) UL JOJLWHTI
sarenbs 1se9] ot Jursn ¢ 9jeWIms? PUE LSS Fursn 'K Sy} UT UOHEBLIEA apdures atp Aynuenb 5a

SSATYINY NOISSTHOF  Z Livd ogl




(CHOS  L1/21/2011 12:35:26  Page 180

180 PART 2 REGRESSION ANALYSIS

If we quantify the sample variation in the y; using SST and estimate § using the least squares
estimator, then the sample variation in the y; splits neatly into two parts, one corresponding to each
of the two sources listed above. To see this, first recall from Chapler 5 that the least squares

estimators & and {3 must satisfy the equations .
g e Equations S-2Y qwd §5-27 in

N N
Z{y,- _& - B*xi} =3 U = Ny-N& - N = 0 (8-4)

ix;{uj—d" - Q*x,-} = Zx,-uf“ =0 (8-3)

g'-“-"“ ~ BUESS

in order to make the partial derivatives of SSE (8%, B~ ) with respect to both &*** and B
equal to zero. The first of these two equations implies that$ — a* — 8% = 0; substituting this and
the equation for the fitted model (y; = & + % + «) into the definition of SST given above

yields
¥
SST=13 (3 -7)
i=1
e (R )
;;: -6)
- ;{ﬁ*[x, — 3] + uff }
= é{( ) [ — = + 28" [ — Fa™ + ()" }
50 that

A

-

I
=

[{(G*)zzxf -5+ 2" I — Tl + ( .-“‘)2}

> (B7) b -7+ 2[§"ZN:x,-u?’ - 2;’3*&}?‘ + i(uf“)2 (8-7)

1 i=1 i=1 i=1

N
= (8 *)ZZ _%24+0+0+SSE(6", £')

i
N

il
Mz

[

Thus, using the two conditions characlerizing &2 and % as minimizing SSE(&"" Bgum)
SST splits cleanly into a part — SSE{&”, |§*) — which is clearly due to the imperfect fit of the model to
2N .
the sample data and a part — (B ) 3" [ — %) — which is clearly due to the size of B and to the
f=

degree to which x; varies across the sample. Because SSE(&*, ") is the portion of SST which the
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3t = 0 (8-4)

=0 (8-5)

- ~ EUESS
th respect to both &89 and B

- B*i = () substituting this and
he definition of SST given above

4'%) }2 v

2
Hul' + (u?‘) }

')

N N
2TFY 3o’ @7

i=1 i=1

v, B)

~ pUeS
L -~ gUess
B as minimizing SSE(&5*, B
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~ % Ay 2 N
sample variation in & — B x; does not reproduce, (B ) 35— ] must evidently be the po
i=1
of SST which the sample variation in &" — B’ x; does reproduce.!
Therefore R® is defined as

S
P
™
*
S
o
=

._“32 - 2N x._)—cl
_ [x — 3] _ (B) i;[, l |
- (y'_T)Z SST

=3
I

o8

L

and interpreted as the fraction of the sample variation in the dependent variable which is “explai
by the fitted model. Viewing SSTAN—1) as the sample variance of y; ... yx—1.e., ignoring the
(noted above) that this statistic is really characterizing the dispersion of y; ... y around y rather
around an estimate (e.g., &* + B x;) of their actual means - this interpretation is often verl
‘expressed by identifying R? as “the fraction of the variance of y; explained by the fitted mo
Next, note that the expression for R* in Equation 8-8 is identical to the square of the expressio
7, the sample correlation between the data on the explanatory variable (x; ... xx) and the obse
“realizations of the dependent variable (y; ... yn), obtained in Section 5.6. Thus, R? also equal
square of the sample correlation between y; and any linear function of x;, such as &g, ¢ + ﬁ;
Hence R? bears a second interpretation as a consistent estimate of the squared correlation bety
. the dependent variable in the regression model and the model’s predicted value for ¥;, as de
" and analyzed in Section 8.4. And this, of course, is the motivation for calling this statistic “R*” i
rst place.
R? has a third useful interpretation as a goodness-of-fit measure. Substituting SST — SSE(&"*,

e o fas 2 N 3. ‘ f.—-——\
"(B ) El [ —%]" in the above expression‘yields (ﬁm& b "7) :
__SSE(@. B) ‘

N2 N "
R = (B) Zk3 _ SST — SSE(&”, )
B SST - SST ST

lhat.can this set of equations tell us about the size of R7If ({:3*)2 is close to zero, then the estinr
odelis a poor fit to the data — the sample variation in x, is apparently irrelevant to the sample vari:
: andﬁR?‘ is close to zero. In contrast, a model which fits the data very well (and hence for w
at, B*) is very small) will have R? close to one. Thus R? lies in the interval [0, 1] and
onable to interpret it as a goodness-of-fit measure.

this point, however, a good deal of subjectiveness creeps into the discourse — how high do«
o be in order to characterize the fit as “good”? In practice, this depends on both the contex:
tastes. Generally speaking, household survey data contains so much noise in
ation that most analysts are quite happy with an R? value of around .20. In cont
ople would consider a regression equation involving aggregated (e.g., macroeconomic)
ipoor fit to the data with an R? less than, say, .50.

filst also be pointed out that it is not always a good idea to use R? to quantify the degre
ip between two time-series variables. For example, suppose that ¥, and x, are
d time-series, each of whose sample behavior is dominated by an upward time tre
gate annual U.S. consumption spending and the population of Madagascar. An estimm

the assumptions about the mode! eror term played no role here; this decomposition of the sample variat
ust a consequence of the fact that B is the least squares estimator of B.
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The Multiple Regression Model

2.1 INTRODUCTION

Our coverage of the basic Bivariate Model is now complete. Analysis of this model allowed us to
examine regression parameter estimation and inference in the simplest possible setting. But the
modeling of real-world economic data sets — and even, as we saw in Chapter §, beginning to check
the assumnptions of the Bivariate Model — requires that we broaden the modeling framework to
include multiple explanatory variables in the regression model. This broader framework is called the
Multiple Regression Model and is the topic of this chapter,

None of our work on the Bivariate Model will go to waste, however. In particular, because a
complete analysis of multiple regression requires a background in matrix algebra which is beyond
the scope of this book, many of the results on the Multiple Regression Model ~ for example, the
BLUness of the least squares parameter estimates — will merely be stated here and motivated by
reference to the analogous results for the Bivariate Regression Model. And you will find that a
number of other derivations in this chapter — those, for example, of the sampling distributions of the
parameter estimates and of the inference results based on these estimates — are quite similar to the
analogous derivations in the context of the Bivariate Regression Model.

Other issues arise here which could not occur in the context of the Bivariate Regression Model.
We must now deal with the issues associated with overelaborate and underelaborate models. Also
unique to the Multiple Regression Model is the problem of multicollinearity, where the sample
variation in one explanatory variable is uncomfortably similar to that of another.

The Multiple Regression Model is vastly more powerful than the Bivariate Regression Model;
this chapter closes with several examples illustrating its applicahility.

9.2 THE MULTIPLE REGRESSION MODEL

The Multiple Regression Model is a straightforward generalization of the Bivariate Model to
include multiple explanatory variables:

The Multiple Regression Model
Vi = Bpxig + Boxiag + Byxia -+ Bty + Ui i = 1N
X3 =1 for i =1.N

X;;is “fixed in repeated samples”fori = 1. . Nand forj = 2 .k 9-1)

U; ~ NID[0,a?]
Equivalently,

¥, is independently ( ot identically) distributed
N[Bfs - Bl
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abrupt, then one might do better to model B as varying linearly with x;,, in which case one is right
back at including (x;3)” in the model.”

The assumption that the explanatory variables are “fixed in repeated samples” was discussed in
Section 5.3, This assumption is unfortunately not so easily checked; nor are violations of it so easily
dealt with, But dealt with they can be, using an economelric technique known as “instrumental
variables estimation.” A useful consideration of this very important topic must be delayed until
Chapter 12, however, because it requires the additional material on probability theory covered in
Chapter 118

Finally, the last piece of the form of the model specification is a choice as to the form with which
the dependent variable enters the model. For example, will ¥; be the average income for the ith
country in the sample, or would the dependent variable in the model be more appropriately specified
as the logarithim of the ith country’s income, or perhaps as per capita income for the ith country?
This choice turns out to interact strongly with a consideration of the srafistical assumptions on the
error term ~ in particutar on the assumptions that the model error term, U}, is normally distributed
and homoscedastic, The remainder of this chapter focuses on precisely these two assumptions: how
to sensibly test whether or not they are (to a reasonable degree) satisfied and how to respond to
sample indications that they are seriously violated.®

10.2 THE FITTING ERRORS AS LARGE-SAMPLE ESTIMATES
OF THE MODEL ERRORS, U; ... Uy

There is a simple relationship between the fitting errors and the model errors in the Bivariate
Regression Model; in that model the fitting errors are

up

I

o + Bx; + U)] — [6 + Py
U,-—[&—a]—[ﬁxi
=Ui—[6-o-x[p

(10-2)

fl

where the model has been substituted in for ¥; and the terms rearranged.'® Recall from Equation 6-16
that

N
B =B+ wry (10-3)

i=1

" With time-series data, where the data set is ordinarily sorted in increasing time-order and the usual issue is whether (and in
what way) a coefficient such as B4 varies over time, many different specifications have been proposed for the ime-evolution
of a regression parameter. The simplest of these are the abrupt-change specifications discussed above: another is to assume
that B35 is a linear or quadratic function of time (observation number) — this suggests an allernative specification examined in
Exercise 10-1. Ashley (1984, Economic Inquiry XXII, 253-67) examined these (and a number of substantially more
sophisticated alternatives) and found that one is usually just as well off using the straightforward dumimy-variable approach
described above,

¥ See also the discussion of this topic at the end of Active Leaming Exercise 10b {available at www.wiley.com/college/ashley).

#The material in Chapters 5 and 9 showed that inclusion of an intercept in the regression model sutomatically implies that E[{] is
zero — und tukes one a consideruble way twward unbiased parameter estimates, Thus, in general no sensible person will omit the
intercept; consequently, this portion of the assumptions on the model error ordinarily need not be checked at all, The noa-
autocorrelation assumption = that corr(L;, U)) equals zero for all i # /- is frequently quite problematic for models using time-series
data, bt the analysis of these models requires the additional probability theory material to be covered in Chapter 11. Consequently,
coverage of diagnostic checking of this portion of the assumptions on the medel errors is delayed until Chapters 13 and 14.

"“This relationship was previously derived in the “Estimating ¢ section of Chapter 7. The relationship is almost as simple in
the Multiple Regression Model ~ see Exercise [0-3.

Y — [&+ Px)] {4\19‘ ‘rl,'{,?

v'O( lﬂP
N Y2
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‘he other hand, these results yield no guidance as to how one might respecify one’s model so as
ibtain a better model or more efficient (closer to BLU) parameter estimates: the results
;ribed below only “fix” the standard error estimates, which heteroscedasticity otherwise
orts. It is also well to emphasize at the outset that these “robust” standard error estimates —
ed “robust” because they are robust to the presence of heteroscedasticity — are only valid for
e samples.?

1 practice, robust standard error estimates are very easy to obtain: all econometric software
cages worthy of the name will compute these standard error estimates {at the user’s option) with
uss at all. In Stata, for example, the command;

jressyx1x2x3

iputes the parameter estimates, a standard error estimate for each parameter estimate, and so
h for a regression model with dependent variable “y"” and explanatory variables “x1”, “x2”, and
*. The command for estimating this regression model and instead computing the robust standard
T estimates is simply:

jressyx1x2x3, sobuwst VCE (."°h°$+)

‘he formulas which the econometric software uses for computing the robust standard errors are
ightforward, also. For example, the robust standard error estimator for $ (the OLS slope
mator in the Bivariate Regression Model), is computed as the square root of the variance
mator:

[var(B)] """ = D (w")* (4"’ (10-20)

ch leads to the robust standard error estimate

sre wPl® is the usual OLS welght for the ith term in the expression for § and u;" is the observed
ng error for the ith observation. These standard error estimates are usually nowadays
ed “White-Eicker standard errors” after White (1980) and Eicker (1963), who first proposed
n.

Vhere do Equation 10-20 — and analogous results for computing robust standard errors for
fficient estimates from the Multiple Regression Model — come from? The remainder of this
ion provides a simple demonstration that the expression given in Equation 10-20 is an unbiased
mator for the actual sampling variance of B, at least to the extent that the sample is sufficiently
e that the fitting errors can be substituted for the model errors. In fact, this demonstration
lires only a minor amendment to the end of the derivation of the sampling variance of B (in the
sence of heteroscedastic errors) given in equations 10-11 through 10-14,

(10-21)

fit 5

ow large is large enough? Absent a simulation study for the particular data set under consideration, one can never be
tin. {And the bootstrap simulation method described in Section 11.8 is, as noted there, specifically not appropriate for a
el with heteroscedastic errors.) Generally speaking, experienced analysts are usually dubious about using these results
less than around 40 observations and casuatly confident about using them when the sample substantially exceeds 100
Tvations.

2 B dt Al iy

A L S )
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This amended derivation begins in precisely the same way, 50 equations 10-11 and 10-12 are

simply repeated here:

[
N 2
= EK ZW?]'SU;X
] (10-11)

where H stands for the random variable
running index i, £

var(P)
N i
= E|S wi*(UH) ' (10-12) -
=1
N
=S Wi E(UH]
i=1
where the last step uses the Linearity Property of Chapter 2. :
pegins to differ. Fyaluating the expectation in Equation 10-12,

Here is where the derivation

E[U;H] = EXU{%W[EISU,@‘X

i=1

N
E KZW‘EIS U;-U,gl 3
{=1
(10-22

il

s |
e seconds

0-13) the third-to-last step again uses the Linearity Property and th ;
rrelat!

is zero when i 1S unequal to £, due (0 the nonautoco

above is now different, however. €

where (as in Equation 1
to-last step follows because E[UUd
assumption. The final step in the sequence of equations
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‘instead of evaluating E[U?] as o?, we instead recognize that - for sufficiently large samples — the

fitting error U™ is a good approximation to the model error, U,
Substituting this expression for E[U/;H] from Equation 10-22 into the previous expression —

Equation 10-12 — for var(B) yields

N
var(f%) = Zw?lsE[U,-H]

i=1

N .
Ols ols 1 2 ™
;wi' (weee (U™ 1) (10-23)

N

loes . & i
w oF by Ui st daking

Taking the expected value of both sides of Equation 10-20 yields

[l ®]™] = B[S 2] = L e[y aow

(") E (0]

1

'

i=1 ‘ i=

which has the same right—haind side as Equation 1023

(10-25)

and the robust estimator of var(B) given in Equation 10-20 is an unbiased estimator when the sample
size is sufficiently large that the model errors can be replaced by the fitting errors.

This unbiasedness result is nice, but what's really wanted is a proof that the robust standard
error estimate — the square root of Equation 10-20 — provides an at least consistent estimator of the

actual standard errors of B — i.e. of 4/var(B). This is not difficult to do, but requires the sharper
statistical tools covered in Chapter 11.%6 '

For samples sufficiently large that their use is justified, the robust standard error estimates
discussed in this section completely resolve the problems with hypothesis testing and confidence
interval construction posed by heteroscedastic model errors. Nevertheless, it is still a good idea to
test for heteroscedasticity in the fashion described in the Erevious seclion, so as 1o give the data a
chance to point one toward a better model specification. 7

3 That derivation constitutes Exercise 11-7.

3 For large samples with heteroscedasticity of unknown form - and where it has proven infeasible to improve the model
specification so as to eliminate the heteroscedasticity ~ the best estimation technigue 1o usc is Generalized Method of
Moments (GMM) estimation. GMM is covered in Section 19.4. In this context GMM essentially implements the FGLS
estimator discussed above (immediately below Equations 10-17 and 16-18), by using the squared fitting errors from the OLS
regression — () ... (ulf)* — 1o “estimate” the weights w? .. w} and then using these weights (as in Equation 10-18) to
tespecify the model so that the error term is (asymptotically) homoscedastic. The alert reader will recognize this latter
Eicker robust standard error estimator. The advantage of GMM, where it is
is that it provides asymptotically efficient parameter estimates as well

conveniently implemented in the software one is using,
as consisient standard error estimates. As with the robust standard error estimates, its disadvantages are that it is only
inor problem which is easily fixed, rather

asymptotically justified and that it encourages one to view heteroscedasticity as a m
than as a symptom of model misspecification which merits further analysis.

substitution as the same “trick” used in the White-
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APPENDLET1.1: T £ ALGESRA OF PROBABILITY LIMIT

a1 7 and ¥ bé rwo estimators. each of which is defined in such @ way that its probability limit i5
finite und szch of which is based on observations ¥y ... V, which are assumed 1o all be identically
I N « . 372 - B . o : . a N

and independentiy distributed.” Then it can be shown thai the following results all hold:

{Linearity) Assuming that a and b are fixed constants,

bt

piim(aV ~ 4V} = aplim(V) + bolim( V) {igleek® (ALT-D
] * .

. (Multiplicaton} / $5°) I
L')uf* b

. X E
plim{V % V) = plim(V) # piim(V)

[

(A11-2)
3. (Division) Assuming that plim(V} # 0.
VA lim(V)
pilm(f) = —= (Al11-3)
\V plim(V)
4. {(Reduction 1o Ordinary Limit) Assuming that Fy is & nonstochastic function of N,
piim(Fy) = A}im_ [Fu] (AT1-4y
2. (Slutsky Theorem) For any cenunuous function F {-],53
piim(F{V}) = F{piim{V)} (A1l-3)
f. (Law of Large Numbers) Assaming that E[V] is finite,
A
plim NZ}V,) = BV (A11-6)
| =
7. (Cenwal Limit Theorem — Lindeberg-Lévy)
[ 1 & F e - .
V, ~ TD{p. 02) = plim WT‘ vi| = piim[ VA 7| = Nip. o] (A11-T)
i=l g - -
%, (Asymptotic Equivalence)
If plim(V) = piim(_f/}. then their limiting distributions are the same. (A11-3)

52 Sirictiy speaking, V and V are (wo sequences of estimators such that e probabiiity limit o1 each is either a finite numoer or
2 ranaom variable with finite variance. Harmilton (1994, Chapter 7) provides & more detaited treatment and proots, including
extensions of iiese same resuits w sequences for which the underlying observations are a seriallv dependent time-series rather
than independently distibuted observations. These cxtensions are usec in Chapter 13. James D, Hamiiton (1994, Time Series
Anafvsis. Princeton University Press: Princeton. NJ.

%5 4 function Flz} is continuous if and only if the timit of Flz} as £ approaches =, is F{z,] for all vaiues of 7, — L.e.. me
function has no sudden jumps.
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PART 2  REGRESSION ANAL
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Equation 11-6 from Section 11.4 can now be written as

T T
Lb?LS = ¢ 4 ZW?ISUI _ UZW‘MS )
i=2 t=2

T
= ¢+ Y Ws(U, -T
t ; t ( ! ) (13-
T Yr_]—'Y
= ¢; + T u,-uU
i ; Z(Ye_l—y)z ( ! )
£=2

. . B
Letting G now stand for the sum (Yo - Y), this becomes

=2
+OLS L [Yia =V 5
|
= @ +—G"Z(Yr—1 - Y) (Ur - U)
=2
T
S (¢~ D) (- T)
. 1=12
= @+ G
T
S (¥ =7)(U: - 0) .
=2 (1
‘ = @ T fv_j
T (-7
£=2

\ 1 T . _

R S IO

— (Pl‘:F.. il 11=2 o
T—_‘g(n—l—ﬂz

1t'f=2

66\7(},{—-1: UI)

= gy +
g Val'(Yg_])

Taking the probability limit of both sides of Equation 13-25 and applying the results
Appendix 11.1,% ‘

33 e results on probability limits given in Appendix 11.1 assumed that the relevant random variables are indepe
distributed, whereas that is plainiy not the case for the serially dependent ime-series Ya .. Yr. Also, the tin
YU o YroUr - although serially uncorrelated — is not serially independent, either. It can be shown, however -
Hamilton (1994, Chapter 7) - that all of the Appendix 11.1 results follow for both of these serially dependent series
both of these time-series are covariance stationary and because for each the sum of the magnitudes of its autocovar
bounded. (See Exercises i3-4d and 13-5.) The derivation of Equation 13-27, the asymptotic sampling distribution {
however, must apply a Central Lirnit Theorem with regard 1o sequences of sample means of Y, U,, which requires sc
closer to seriai independence (2 “martingale difference”) on the part of ¥, Uy, this is discussed in Appendix 13
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A Yy, U)
1 OLS\ _ nli cov(¥,_1, U
plim($9%°) phm(cpl T )

) o ToV(Y ., U
= pl 1 —_—
i) i

| _(EV(Y.o1, UL
Jim (cpl}whm( Tt (Yoo) )

plim{@o¥(Y,—1, U1)

(13-26)

! plim(¥ar(¥,_1))
- COV(Y;-[, Ur)
=et var(¥Y,_1)
=%

yhere the second step in Equation 13-26 uses the “Linearity” property (with @ = b = 1), the third
step uses the “Reduction to Ordinary Limit” property {since ¢, is not random), and the fourth step
1ses the “Division” propf:rty.34 Finally, the last two steps in this equation use the Law of Large
Numbers property to evaluate the probability limits of the sample covariance of ¥,_, with U, and
‘he sample variance of ¥,_,. The covariance of Y,_, with I/, is zero because the MA(oc) form of the
model in Equation 13-17 implies that ¥,_, does not depend on the current value of the model error —
see Exercise 13-4.

Thus, cb?l‘s is consistent for @,, albeit biased. The asymptotic sampling distribution for &PL° is

derived in Appendix 13.1; the result is

z
VEZT(9S — ¢,) ~5 N[0, ——| = N[0,1—o7] (13-27)
var(¥,_y)

where the second part of Equation 13-27 recognizes that variance of Y,_, is identical to the variance
of ¥, itself; the result from Equation 13-19 is substituted in on the right-hand side of this eqllﬂxatitm.?'5

Consequently - just as in Section 11.4 — the asymptotic sampling distribution of cblo S yields
essentially the same computing formulas (for standard errors, confidence intervals, hypothesis test
rejection p-values, etc.) as does the Bivartate Regression Model with a fixed-regressor. Therefore
so long as Y, really is generated by the AR(1) model, and so long as the sample length T is
sufficiently large that the asymptotic distribution ¢?LS is a Teasonable approximation to its actual
sampling distribution — the results from the usual OLS computer output can be interpreted as if the
explanatory variable were fixed in repeated samples.

Broadly speaking, this aspect of the asymptotic results obtained here in the specific setting of the
AR(1) Model carries over to the Multiple Regression Model, including explanatory variables in
addition to Y,_,: the results from the usual OLS computer output can be interpreted as if the
explanatory variable were fixed in repeated samples if the sample is large enou gh for the asymptotic
sampling distribution of the parameter estimators to be relevant and if the model is well specified in
terms of error term homoscedasticity, omitted variables, and endogeneity issues.

™ Note that the division property requires that the probability limit in what will become the detiominator is not zero; this is not

an issue here, because it is obvious that the variance of ¥,_, is strictly positive.
35 Of course, per Exercise 13-3, if the true generating mechanism for ¥, is actually some other model — such as a higher-order
AR model. or one of the nonlinear models discussed in Section 18.6 — then Equation £3-11 is omitting explanatory variables,

one or more of which might be correlated with ¥,_ . Inthat case $25 is no longer a consistent estimator.of ¢, and Equation 13-27

is not the asymptotic. sampling distribution for 5.
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JANALYSIS CHAPTER 16 REGRESSION MODELING WITH PANEL DATA {PART 8] 519
‘om their and p_re denote the variable names for the corresponding *quasi-differenced” variables, then the
) RE Stata command:
+ Eig
h current 3 i ivregress 2s1s cig_re (cig_lagl_rep_re=glq2 q3) tax_re , vce(cluster statenum)
wted with i
also yields consistent two-stage least squares estimates of Beigs Brax, and Bpi., presuming that the
variables and instruments are all uncorrelated with v, As in Section 16.1, if the parameter estimates of
(16-46) greatestinterest are not significantly different across these two modets, then one would prefer the more
' efficient Random Effects Model estimates.
Unfortunately, it is not immediately obvious what actual variables one could credibly use as the
€, 17‘;5 e instruments Z/; ,, Z2; ,, and Z3;, (or QI;,, 02;,, and 03, ) in these models. In some regression models
the underlying economic theory implies that certain variables will be exogenous; utilizing those
FE FE] : implications in justifying the estimation procedure, however, makes the consistency of the model
: g, | 18 . . - - 10 . .
BT TR parameter estimators conditional on the validity of the theory.™ This is fine for testing the theory —
neity in P but only if one can also consistently estimate the model’s parameters in a separate fashion that is not
1 the Fixed conditional on the theory’s validity. Which leaves the analyst, again, nceding credibly valid
instruments.
r enough to Fortunately, there is an alternative approach, the “First-Differences Model,” which provides a
ber Of_"ahd solution — albeit an imperfect one — to the problem of consistently estimating coefficients such as
timation of & Beigr Braxs and Bz in a model like Equation 16-41.
|6-44) each E Aside from the pooled regression model, which basically ignores the heterogeneity induced by
ise both the the country/statefindividual-specific component (v;) altogether, the First-Differences Model is
ransformed actually the simplest framework so far considered. In the vocabulary of Chapter 13, it consists
1 these (wo of simply considering the model “in changes.” Thus, for the cigarette consumption model
€1 w EiTi . considered here {Equation 16-41), the First-Differences Model is just
o variables,

ACIG[J = BcigACIGf,f—l + B:ﬂxATAXi,I -+ BPrfCEAPf,r + Av,- =+ Aai,r

(16-47)
truments for = BcigAC]Gi,r—l - B:MATAXE.-! + BpriceAPl'.f + Agy,
o-siage least

. where ACIG,'J is C[G,"; - CIG"J“L], ACIG,";_I is CIG“_l - CIG,-,r_g, ATAX;'J is TAXU‘— TAX,";_l,

E‘;‘t,paﬂéfulz’, ~and so forth for the other variables.

v Ang fogn;led Note that v;, the state-specific component of the error term in Equation 16-41, is eliminated by

trans this transformation, along with the intercept (had there been one in Equation 16-41) and any
explanatory variables which do not vary over time. Thus, the first-difference transformation at one

am stroke eliminates the non homogeneity induced by the panel nature of the state-level cigarette

Consumption data, but — like the “within” transformation of the Fixed Effects Model — it also
€liminates the possibility of quantifying how CIG;, varies with any time-invariant explanatory
Viriables.!?

Also, one can (and ordinarily should) still include an intercept (a) and a set of year-dummy
ariables in a model specification like Equation 16-47. The inclusion of these terms guarantees that

1y, supposing
igl_re, tax. 1o

_—
is no longer valid
y 14-64 must no¥

xample, as noted in Footnotes 16-1 and 16-7, Equation 16-41 is a subset of the “myopic” model considered in the
€1, Grossman, and Murphy (1994) analysis of cigarette addiction. Their more sophisticated (“rational”) theory of
ction — which was the point of their paper ~ implies the additional inclusion of CIG;,. as an explanatory variable.

e, however, ver, their theory also implies that current cigarette consumption, CIG;,, depends on past and future values of P only

., cesto L ..

lier referen 19 gh their impact on CIG;,—, and CIG,,,,. Consequently — conditional on CJG,_, and CIG; .| — both past and future

ml Secuﬂz 0 oM es.of Py, provide valid instruments for use in estimating the regression parameters in their “rational” model setting. (5
advantag ) IR

HQUSman-Taylor estimator discussed at the end of Sectiog allGws fOFSGine me-invariant explanatory varisbles,
Mes that all of the explanatory variables are strictly eXogenous with respect to ¢;, and also does not allow for
Cedasticity and/or serial cotrelation in £, work on generalizing this approach is currently in progress.

” O.Ption-—m i
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{ance stationary? Just as with diagnostically checking the assumptions OF e itiiny

«ssion Model —€.2.. of homoscedastic and serially uncorrelated model errors — one can never
or sure. Still, sensible and useful diagnostic checking of these regression assumptions is
ble in practice, S0 long as one has a reasonable amount of data.”!
ecking a time-series for covariance stationarity is a similar enterprise. T
Jostic checking used data plots and auxiliary regressions; covariance stationanty checking
entrates on two tools: a time-plot of the sample data and a “sample correlogram.”

1e sample correlogram is simply a plot (and/or tabulation) of the sampie autocorrelations — i.e-,
ry... Tk, where k < 20 is usuaily plenty for quarterly data and k < 60 —soasto include lagsup -
for monthly data. A sample correlogram for a time-seties is very casy
time-series named ydat, for example, the

he regression model

2
je years —18 usually plenty
-oduce in most econometric software packages: for a

mands in Stata are: >

2t tee

dat, lags (60}

rgram ydat, lags (60}

jefore looking as some illustrative sample output from these commands, it is helpful to first
mine some useful results on the asymptotic sampling distribution of the estimator Ry, obtained
Bartlett (1946) and Marriot and Pope (1954).23 Understanding these results — and their
itations — is essential to effectively interpreting the estimates, ri...7x In the way of
mitations,” please note at ihe outset that these results were all derived under the assumption
t N is large and that the time-series Yy ... Yn 18 covarjance stationary and (jointly) pormally
tributed. As we will see, a bitcan be said about how large N needs to be, but the best advice with
sard to data which are highly nonnormal is to pretty much ignore the Bartlett results.
Assuming, then, that the time-series Y. Yn 18 covaniance stationary and (jointly) normaily

sributed, Bartlett (1946) finds that the asymptotic sampling distribution of Ry is

[e4]
VR(Re = ) —= N0, Y P (17-11)
-, L300

mptotically normal, and has an asymptotic variance

are to blithely replace p; by 7i in

nus, R, is consistent {as an estimator of py). asy

2
EQUN) > p%. Tt is commonpiace, therefore, for econometric softw
i=% wOD

mmarized in Equation 15.3 of Section 15.6. Note that the
£ what is required for covariance stationarity. In fact — 10
) in the Multiple Regression Model
d, and normally distributed.

For example, using the plots and auxiliary regressions su
omoscedasticity assumption corresponds precisely to a portion ©
1ake the connection explicit — the assumptions made about the mode} error term (U,

orrespond precisely to agswming that ¥, is covariance stationary, serially uncorrelate
2 As noted in earlier chapters, Stata needs to be informed (once) that the data are in time order, using the “teget’” command to
pecify a variable which increases monotonically with time; here, it is assumed thata user-created variable named fee has this
woperty. These commands COMPUIS 7y ... 160} 40 lags is the default value; the wye” command makes the plot and the
‘cotrgram” command makes the tabulation; most people find the plot far more useful than the tabulation.

B Gee also discussion in Kendall and Stuart (1963, Volume 1}. Barett, M. S. {1946), “On the Theoretical Specification
tocorrelated Time-Series,” Journal of the Royal Staristical Society B 8, pp. 27-41; Marriot,

of Sampling Properties of Aw
F.H.C., and J. A. Pope (1954), “Bias in the Estimation of Autocorrelations,” Biometrika 41(3), pp. 390-402; Kendall, M. G.,

and A, Stuart {1963}, The Advanced Theory of Suatistics 1, Griffin: London.

24 Non-normality becomes 2 substantial issue when working with dispersion dara — such as volatility measures for financial
returns data. 1t is also an issue for nonlinear time-series
non-normality in the data. In this regard, note that transforming ach observation inanen-
that a histogram of the observations looks normally distributed does not eliminate any nonli
relates to its own recent past; it also does not induce Jjoint normality in the time-series.

modeling, because nonlinear generating mechanisms generally induce
normalty distributed time-series ¢

nearity in the way the time-series

e Pmac i




- Estimated Bartlett 95% Conlidence loterval for p,
(Assuming p,. p;.y. Pryz.--are all zero.)

(17-12)

under the tacit assumption that py, p;.;, Py, etc. are all zero. That assumption may or may not be
remotely reasonable, but it is probably the only reasonable assumption to build into the software.

Of course, using Eguation 17-11, one can easily compute one’s own Bartlett-based asymptotic
95% confidence interval for p, as

Bartlett 95% Confidence Interval for p;, .
(Assuming p,,,. p,_1: Pmae2, .. are all zero.)

(17-13)

which is asymptotically valid so long as ¥, ... ¥y are covariance stationary and (jointly) normalty
distributed, with p; equal to zero for values of k greater than a value of m one would have to choose, In
practice, the squared sample autocorrelations become small at large lags — i.e., for large values of k -
for data on time-series which are clearly covariance stationary, so the value of m one chooses to use in
estimating such a confidence interval is actually not critical, so long as one makes it fairly large *
The sample autocorrelation {R;) is a consistent estimator of p for any covariance stationary time-
series -- and follows the asymptotic sampling distribution of Equation 17-11 for jointly normal time-
series — but R, is not generally an unbiased estimator. A bit is known about this finite-sample bias in
eyer. In particular, Marriot and Pope (1954) looked at the asymptotic bias in R;. for time-
series geneigted by several simple processes. For jointly normal ¥, generated by an AR(1) model
with paramet&r value ¢, they find that R;, for example, is biased downward in amount equal to
(i+ Sp,)/ N in largd samples.”® Based on these results (and considerable experience with simulated data)
it seems likely that R, is always biased downward — i.e., toward zero — at low lags when the time-
series is posiively autocorrelated at low lags, and probably in greater degree for small N than the
Marriott-POpe result suggests. ‘
wmally, Bartlett (1946) also provides an expression for the correlation between the sampling errors -
made by R, and those made by R, ;,—i.e., at adifferent lag —assuming, as before, that the sample is large
and that the time-series Y, is both covariance stationary and jointly normally distributed. Their general -
expression for this correlation is a bit opaque, but it is worthwhile looking at a special case of it — which -
is by no means misleading — in which the difference in the two lags is one and the popuiatio
autocorrelations are assumed to all be zero for lags larger than three. In that case, the Bartlett resul

(P1 + PPy + PaPy) (17-14

corr (R, R). =2 .
(Ri. Rit1) (1 %& +0d o5 hare

% The reason for this is that the value of {pk)2 must dwindle to zero for large k in order for the variance of the time-series to be
bounded; this will be demonstrated in Section 17.5, when the MA(co) representation of 4 time-Series is examined.

26Again, see Equation 13-11 in Section 13.4 for the definition of the AR(1) model (and ¢,); autoregressive models are
analyzed more completely in Section 17.6.
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630 PART 3  ADDITIONAL TOPICS IN REGRESSION ANALYSIS

Finally, this simple bilinear model also illustrates a fundamental source of another feature of

many economic time-series: autoregressive conditional heteroscedasticity, or “ARCH.” The

homoscadasticity assumption in a regression model is the assumption that the variance of the

model error term is a constant, whereas heteroscedasticity is the failure of this assumption. Here the

issue is homoscedasticity or heteroscedasticity of the time-sernies itself, which is the dependent

variable in the model. The assumption that this dependent variable is strictly stationary (and hence

also covariance stationary) implies that the unconditional variance of the time-series is a constant

over time; hence, the time-series is unconditionally homoscedastic. This result, however, does not
rule out the possibility that the conditional variance of a time-series — and, in particular, its variance |
conditional on having observed its own recent past — might vary over time. i
Indeed, it has become well known in the last 15 years that the variance of the daily and monthly
returns to many financial asset time-series vary over time and, moreover, vary in such a way as to be
positively correlated with the magnitude of recent returns fluctuations. Predicting the variance of a
| financial return time-series is crucial to pricing related financial assets — “options” and the like —soa
great deal of effort has gone into producing such variance prediction models. One of the most i
popular of these is the GARCH(p, q) model, where the current variance in the model error term is
taken to be a function of the squares of model errors in the recent past: i

Y, = I-"+\/h—rUr

g il 18-1
ho= o+ UL+ > By (18-18)
=1 i=1

Here U, is taken to be serially uncorrelated — with mean zero and unit variance — and the variance
; of Y,, conditional on its own past, is then given by the value of A, Much attention has gone into
. estimating and utilizing GARCH(p. ¢) models, and a number of variations on this theme have been
] claborated and applied; Enders (2010, Chapter 3) provides an excellent introduction to this
literature.™!

The GARCH(p, g) model (and its varianis) are usually considered to be nonlinear models in their
own right, but usually do not allow for nonlinear serial dependence in the conditional mean of ¥, -
only in its conditional variance — and hence are generally not helpful in forecasting Y, itself. This is
because the GARCH(p, ¢) formulation 1s fundamentally a “tack on” to the model for ¥, focusing
solely on the variance of the model exror term. In conirast, it is easy to show that the bilinear model

of Equation 18-13 endogenously induces positive conditional heteroscedasticity in yBILINEAR 42
Val‘(YgI_}:{NEAR\yN’ Yn—12 ) =1 (18 19)
var(YBILNEAR |y vy, ) = By 1

Thus, if ¥, is generated by Equation 18-13, then the conditional variance of ¥, one period hence is
still a constant, but the conditional variance of ¥, two periods hence i$ automatically a direct

N Wote that the parametets o) ... 0, 2T€ generally constrained to be positive, the parameter p is often set 1o one, and the
astimated value of the parameter B, is usaally close to one: this yields values of h; which are positive and smoothly varying
over time. See also: Heracleous and Spanos {2006) for a fundamentally better approach. Enders, W. (2010}, Applied
Econometric Time-Series, Wiley: Hobuken. Heracleous, M., and A. Spanos (2006), “The Student’s ¢ Dynamic Linear
Regression: Re-examining Volatility Modeling,” in Econometric Analysis of Financial and Economic Time-Series (Part A}
Advances in Econometrics 20, Elsevier: Amgterdam.

42 Tpe derivation of BEquation 18-19 is not very difficult, but a bit too challenging for a chapter exercise here. Consequently,
this derivation — and the generalization of this resyit-abod erdagenous origin of conditional heteroscedasticity in
nonlinear models - are both left to Ashley (2010).\As A edasticity
1 in Time-Series,” available-8 ch_si o z n=iiil
: orking_papers/origins_of-condicemet” : ol
Korean 2 conomi ¢ Landw 1% v ‘5"




Lot &cﬂ’flovlt’ > #492,
pagR 63 iu Chagtonlf

Ashley, R, M. 1. Hipich, and D. M. Patterson. 1990. Nonlinear Serial Dependence in Industrial Stock
Retumns. I Advances in Mathematical Programming and Financial Planning 2. (K. D. Lawrence,
Guerard, J.B., and Reeves, G.R., eds.) Vol. 2. JAI Press, London. p. 163-182.
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RAMETER ESTIMATION BEYOND CURVEFITTING 651

apval estimates and p-values for hypothesis tests. But OLS does not provide an

2. the estimator 57 is tacked on separately.
he MLE framework generates an estimator for o~ in a gracefuol and natural way. In the
le — but now no longer artificially assuming that the value of o2 is known - 0" in the

. . . ~ ~ gess . '
function is simply replaced by cr2guess and L(y; .- yn B ,(rzgms,x1 .. Xy} 15 nOW

ith respect to both f}guess and azgue.ss‘ The MLE estimator of o2 is thus just the value of

ch

A gUESS o

:Uéuess’ Xy XN)
1
60' guess aguess - éMLB
{19-8}
N
_ 0 1 Myp(ome? ! — g -
36 Z 2 guess 26 2 i
Uguess 0-guess i=1

After just a bit of algebra (Exercise\19- this yields the MLE estimator of o

. 1 & AMLE 1 N-1
UidLE = _A_{Z()’i - B xi)z = ESSE = (T)Sz (19-9)

i=1

JAaximum Likelihood Estimation framework leads to an estimator of o in a coherent,
e 52 — which was constructed so as to be an unbiased estimatot of

snsistent way. Unlik
“is clearly biased; but Gy p tums out to have very nice large-sample (asymptotic)

this is the second big advantage of MLE over OLS estimation: the MLE estimator of any
ameter —call it @ —can be shown to have every good asymptotic property one could think
r virtue of being a MAXimu likelihood estimator: :

is a consistent and (asymptotically) unbiased estimator of 0.

is an asymptotically efficient estimator of 6 — that is, there is nO consistent estimator of 6
a srnaller asymptotic variance than that of BmLe:

asymptotic sampling distribution of Opip s easy to obtain, because Bwus 18 (asymptoti-
*y pormally distributed with (asy mptotic) mean § and (asymptotic) sampling variance equal
1/E[F*L(8) /207, which 1s usually easy to calculate = cee Exercises 19-1 and 19-2 for

trative emmples.5
"} is a continuous function, then g(@)MLE) is the maximum tikelihood estimator of g(®), and

ce partakes of all the nice asymptotic properties listed above.

¥71, Sections 8.4 and 8.5) gives a particutarly accessible derivation of alt of the results given below for the scalar
-parameter) case. He also discusses the very mild ragularity conditions (basically on the smoothness of the
g density function) which are needed to support these results; these are all satisfied by regression models with
distributed errors. Bxcept for the mote sophisticated notation, these conditions (and results) are very similar where
fficients are estimated, except that the value of k must be finite; that is, k cannot rise with the sample lengih, N. Theil,
), Principles of Econometrics, Wiley: New York.
at the log-liketihood function in the foregoing expression is in terms of the population parametet, 8 — &8 see
19-1b. The indicated second partial derivative is generally easy to obtain whensver (as here) one has an analytic
an for L(B); its dependence on the model errors is also usually simpte, SO gvajuating the expectation is generally easy.
»d asymptotic variances for MLE estimators ar¢ readily obtained where L(#) must be maxinized numerically, using
-esults. :
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